如图,在YABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=(  )A.2:3B.4:9C.2:5

如图,在YABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=(  )A.2:3B.4:9C.2:5

题型:不详难度:来源:
如图,在YABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则SDEF:SABF=(  )
A.2:3B.4:9C.2:5D.4:25

答案
D.
解析

试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以SDEF:SABF=4:25
试题解析:∵四边形ABCD是平行四边形,
∴AB∥CD,BA=DC
∴∠EAB=∠DEF,∠AFB=∠DFE,
∴△DEF∽△BAF,
∴DE:AB=DE:DC=2:5,
∴SDEF:SABF=4:25,
举一反三
在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为2,把△EFO放大,则点E的对应点E′的坐标是(  )
A.(-2,1)B.(-8,4)
C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)

题型:不详难度:| 查看答案
如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为(  )
A.aB.C.D.

题型:不详难度:| 查看答案
如图,正△ABC中,∠ADE=60°,

(1)求证:△ABD∽△DCE;
(2)若BD=2,CD=4,求AE的长.
题型:不详难度:| 查看答案
如图,直角△ABC中,∠C=90°,AB=2,sinB=,点P为边BC上一动点,PD∥AB,PD交AC于点D,连结AP.

(1)求的长;
(2)设的长为的面积为.当为何值时,最大并求出最大值.
题型:不详难度:| 查看答案
如图,△ABC中,AB>AC,D为AB上一点,下列条件:①∠B=∠ACD,②∠ADC=∠ACB,③,④中,能判定△ABC与△ACD相似的有(    )
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.