如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列

如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列

题型:不详难度:来源:
如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论:①∠AED=∠ADC;②=;③AC?BE=12;④3BF=4AC.其中结论正确的个数有(  )

A、1个     B、2个     C、3个    D、4个
答案
C
解析
①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,
∵∠EAD=∠DAC,
∴∠AED=∠ADC.
故本选项正确;
②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,
∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,
故不一定正确;
③由①知∠AED=∠ADC,
∴∠BED=∠BDA,
又∵∠DBE=∠ABD,
∴△BED∽△BDA,
∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
∴BE:BD=DC:AC,
∴AC?BE=BD?DC=12.
故本选项正确;
④连接DM,

在Rt△ADE中,MD为斜边AE的中线,
则DM=MA.
∴∠MDA=∠MAD=∠DAC,
∴DM∥BF∥AC,
由DM∥BF得FM:MC=BD:DC=4:3;
由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,
∴3BF=4AC.
故本选项正确.
综上所述,①③④正确,共有3个.
故选C.
举一反三
(本题8分)如图,在一块三角形区域ABC中,∠C=90°,边AC=8m,BC=6m,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上.

小题1:(1)求△ABC中AB边上的高h;
小题2:(2)设DG=x,水池DEFG的面积为S,求S关于x的函数关系式,当x取何值时,水池DEFG的面积S最大?
题型:不详难度:| 查看答案
若点P是线段AB的黄金分割点,且AP>BPAB=2,则AP=  ▲   
题型:不详难度:| 查看答案
如图,△ABC中,AB=AC,过点A作GE∥BC,角平分线BD、CF相交于点H,它们的延长线分别交GE于点E、G.试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.
题型:不详难度:| 查看答案
王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.

小题1:求两个路灯之间的距离;(考查投影及相似三角形中的比例计算)
小题2:当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?
题型:不详难度:| 查看答案
如图,四边形ABCD是正方形,CE是∠BCD的外角∠DCF的平分线.

(如果需要,还可以继续操作、实验与测量)
小题1:操作实验:将直角尺的直角顶点P在边BC上移动(与点B、C不重合),且一直角边经过点A,另一直角边与射线CE交于点Q,不断移动P点,同时测量线段PQ与线段PA的长度,完成下列表格(精确到0.1cm).
 
PA
PQ
第一次
 
 
第二次
 
 

 
小题2:观测测量结果,猜测它们之间的关系:____________
小题3:请证明你猜测的结论;
小题4:当点P在BC的延长线上移动时,继续⑴的操作实验,试问:⑴中的猜测结论还成立吗?若成立,请给出证明;若不成立,请说明理由.
(考查猜想、证明等综合能力)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.