如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中.(1)操作发现(4分)如图2,固定△ABC ,使△DEC绕点C旋转。当点D恰好落在AB边上时,填

如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中.(1)操作发现(4分)如图2,固定△ABC ,使△DEC绕点C旋转。当点D恰好落在AB边上时,填

题型:不详难度:来源:
如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中.

(1)操作发现(4分)
如图2,固定△ABC ,使△DEC绕点C旋转。当点D恰好落在AB边上时,填空:

线段DE与AC的位置关系是         
设△BDC的面积为,△AEC的面积为。则的数量关系是      
(2)猜想论证(4分)
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中的数量关系仍然成立,并尝试分别作出了△BDC,△AEC中边上的高,请你证明小明的猜想。

答案
(1)DE∥AC;S1=S2;(2)证明见解析.
解析

试题分析:(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;
②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=
12AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;
(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明.
试题解析:(1)①DE∥BC
理由如下:
∵△DEC绕点C旋转点D恰好落在AB边上,
∴AC=CD,
∵∠BAC=90°-∠B=90°-30°=60°,
∴△ACD是等边三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;
②∵∠B=30°,∠C=90°,
∴CD=AC=AB,
∴BD=AD=AC,
根据等边三角形的性质,△ACD的边AC、AD上的高相等,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2
(2)如图,∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
在△ACN和△DCM中,

∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2
考点: 1.全等三角形的判定与性质;2.平行线的判定;3.等边三角形的判定与性质.
举一反三
下列每组数据表示3根小木棒的长度,其中能组成一个三角形的是()
A.3cm,4cm,7cmB.3cm,4cm,6cm
C.5cm,4cm,10cmD.5cm,3cm,8cm

题型:不详难度:| 查看答案
在△ABC中,已知∠A:∠B:∠C=2:3:4,则这个三角形是(  )
A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形

题型:不详难度:| 查看答案
已知三角形的两边长分别为10和2,第三边的数值是偶数,则第三边长为    .
题型:不详难度:| 查看答案
如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.

题型:不详难度:| 查看答案
如图①,△ABC的角平分线BD、CE相交于点P.
(1)如果∠A=70°,求∠BPC的度数;
(2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示);

①                   ②             ③            ④
在(2)的条件下,将直线MN绕点P旋转.
(ⅰ)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由;
(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(ⅰ)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.