试题分析:如图:∵AC平分∠PAQ,点B,B′分别在边AP,AQ上,
A:若BB′⊥AC,在△ABC与△AB′C中,∠BAC=∠B′AC,AC=AC,∠ACB=∠ACB′,∴△ABC≌△AB′C,∴AB=AB′; B:若BC=B′C,不能证明△ABC≌△AB′C,即不能证明AB=AB′;
C:若∠ACB=∠ACB′,则在△ABC与△AB"C中,∠BAC=∠B′AC,AC=AC,∴△ABC≌△AB′C,∴AB=AB′; D:若∠ABC=∠AB′C,则∠ACB=∠ACB′∠BAC=∠B′AC,AC=AC,∴△ABC≌△AB′C,∴AB=AB′. 故选B. |