此题考查了角平分线的性质 由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个. ∵△ABC内角平分线的交点到三角形三边的距离相等, ∴△ABC内角平分线的交点满足条件; 如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,
∴PE=PF,PF=PD, ∴PE=PF=PD, ∴点P到△ABC的三边的距离相等, ∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个; 综上,到三条公路的距离相等的点有4个, ∴可供选择的地址有4个. |