已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.

已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.

题型:不详难度:来源:
已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.
答案
连接PC,
∵AB=AC,AD是中线,
∴AD是△ABC的对称轴.
∴PC=PB,∠PCE=∠ABP.
∵CF∥AB,∴∠PFC=∠ABP(两直线平行,内错角相等),
∴∠PCE=∠PFC.
又∠CPE=∠EPC,
∴△EPC∽△CPF.
(相似三角形的对应边成比例).
∴PC2=PE•PF.
∴BP2=PE•PF.
解析
要证线段乘积式相等,常常先证比例式成立,要证比例式,须有三角形相似,要证三角形相似,须根据已知与图形找条件就可.
举一反三
如图.等腰直角三角形ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角形,使45°角的顶点落在点P,且绕P旋转.
(1)如图①:当三角板的两边分别AB、AC交于E、F点时,试说明△BPE∽△CFP.
(2)将三角板绕点P旋转到图②,三角板两边分别交BA延长线和边AC于点EF.
探究1:△BPE与△CFP.还相似吗?(只需写结论)
探究2:连接EF,△BPE与△EFP是否相似?请说明理由.
题型:不详难度:| 查看答案
下列命题①同旁内角互补,两直线平行;②全等三角形的周长相等;③直角都相等;④等边对等角。它们的逆命题是真命题的个数是(     )
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
在Rt△ABC中,∠ C=90°,BC=1,AC=2,则tanA的值为(   )
A.2B.C.D.

题型:不详难度:| 查看答案
如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△AEF的位置,使EF与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为(    )  
A.7B.14C.21D.28

题型:不详难度:| 查看答案
操作:如图,在正方形ABCD中,P是CD上一动点(与C、D不重合),使三角板的直角顶点与点P重合,并且一条直角边始终经过点B,另一直角边与正方形的某一边所在直线交于点E.
探究:①观察操作结果,哪一个三角形与△BPC相似,写出你的结论,(找出两对即可);并选择其中一组说明理由;
②当点P位于CD的中点时,直接写出① 中找到的两对相似三角形的相似比和面积比.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.