如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是(   )A.20°B.30°C.40°D.50°

如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是(   )A.20°B.30°C.40°D.50°

题型:不详难度:来源:
如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的
度数是(   )
A.20°B.30°C.40°D.50°

答案
A
解析
运用SAS证明△ABD≌△ACE,得∠B=∠C.根据三角形内角和定理可求∠C和∠CAE的度数.
解:∵BE=CD,∴BD=CE.
在△ABD和△ACE中,

∴△ABD≌△ACE(SAS)
∴∠B=∠C.
∵∠BAC=80°,
∴∠C=(180°-80°)÷2=50°.
∴∠CAE=180°-110°-50°=20°.
故答案为A.
举一反三
O是△ABC内一点,且点O到三边的距离相等,∠A=60°,则∠BOC的度数为_______.
题型:不详难度:| 查看答案
已知△ABC≌△ABC′,若△ABC的面积为10 cm2,则△ABC′的面积为________ cm2,若△ABC′的周长为16 cm,则△ABC的周长为________cm.
题型:不详难度:| 查看答案
、如图:AD=EB, BF=DG, BF∥DG,点A、B、C、D、E在同一直线上。求证: AF=EG。
 
题型:不详难度:| 查看答案
如图所示,AE是∠BAC的角平分线,EB⊥AB于B,EC⊥AC于C,D是AE上一点,求证:BD=CD。

题型:不详难度:| 查看答案
如图,BD=CD,BF⊥AC于F,CE⊥AB于E。求证:点D在∠BAC的角平分线上。

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.