定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离,已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系

定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离,已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系

题型:中考真题难度:来源:
定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离,已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点。
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,
当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______;
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式;
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M。
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A,M,H为顶点的三角形与△AOD相似,若存在,求出m的值,若不存在,请说明理由。
答案
解:(1)2,
(2)4≤m≤6时d=2,
2≤m≤4时  d=
(3)①16+4π; 
②m=1或m=3或m=5.2。
举一反三
已知:如图,△ABC中,AB=4,BC=8,D为BC边上一点,DC=6。
(1)求证:△ABD∽△CBA;
(2)若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长。
题型:北京市期末题难度:| 查看答案
如图,将矩形ABCD沿对角线BD折叠,使C落在F处,BF交AD于E,则下列结论不一定成立的是
[     ]
A.△ABE∽△BCD
B.△BDE是等腰三角形
C.∠FBD=∠CBD
D.AE=EF
题型:湖北省期中题难度:| 查看答案
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.
(1)求证:①BE=CD;②△AMN是等腰三角形;
(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;
(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.
题型:江苏省期末题难度:| 查看答案
如图,已知:AB=AC,BD=CD,E为AD上一点,求证:
(1)△ABD∽△ACD;
(2)∠BED=∠CED.
题型:江苏省期末题难度:| 查看答案
如图1和图2,∠ACB=90°,AC=BC,BD⊥DE,AE⊥DE,垂足分别为D、E.
(1)图1中,①证明:△ACE∽△CBD; ②若AE=a,BD=b,计算△ACB的面积.
(2)图2中,若AE=a,BD=b,(b>a)计算梯形ADBE的面积.
题型:江苏省期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.