(1)证明:Rt△ABC中,∠BAC=90°,AB=AC=2, ∴∠B=∠C=45°. ∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC, ∴∠ADE+∠EDC=∠B+∠BAD. 又∵∠ADE=45°, ∴45°+∠EDC=45°+∠BAD. ∴∠EDC=∠BAD. ∴△ABD∽△DCE.
(2)讨论:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意. ②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE, 于是AB=AC=2,BC=2,AE=AC-EC=2-BD=2-(2-2)=4-2 ③若AE=DE,此时∠DAE=∠ADE=45°, 如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=1.
|