学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的

学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的

题型:不详难度:来源:
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA ,这时sadA=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.  根据上述关于角的正对定义,解决下列问题:

小题1:sad的值为(   ▲ )
A.B.1 C.D.2
小题2:对于,∠A的正对值sadA的取值范围是(  ▲   )
A.B.C.
D.
小题3:已知,如图,在△ABC中,∠ACB为直角,,AB=25试求sadA的值
答案

小题1:根据正对定义,
当顶角为60°时,等腰三角形底角为60°,
则三角形为等边三角形,
则sad60°==1.
故选B.(3分)
小题2:当∠A接近0°时,sadα接近0,
当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadα接近2.
于是sadA的取值范围是0<sadA<2.
故答案为0<sadA<2.(6分)
小题3:如图,在△ABC中,∠ACB=90°,sin∠A=
在AB上取点D,使AD=AC,
作DH⊥AC,H为垂足,令BC=3k,AB=5k,
则AD=AC==4k,
又∵在△ADH中,∠AHD=90°,sin∠A=
∴DH=ADsin∠A=k,AH==k.
则在△CDH中,CH=AC﹣AH=k,CD==k.
于是在△ACD中,AD=AC=4k,CD=k.
由正对的定义可得:sadA==,即sadα=.(12分)

解析
(1)根据等腰三角形的性质,求出底角的度数,判断出三角形为等边三角形,再根据正对的定义解答;
(2)求出0度和180度时等腰三角形底和腰的比即可;
(3)作出直角△ABC,构造等腰三角形ACD,根据正对的定义解答
举一反三
计算:
题型:不详难度:| 查看答案
sin60°的值等于
A.B.C.D.

题型:不详难度:| 查看答案
有一张矩形纸片ABCD,按下面步骤进行折叠:
第一步:如图①,将矩形纸片ABCD折叠,使点B、D重合,点C落在点处,得折痕EF;
第二步:如图②,将五边形折叠,使AE、重合,得折痕DG,再打开;
第三步:如图③,进一步折叠,使AE、均落在DG上,点A、落在点处,点E、F落在点处,得折痕MN、QP.这样,就可以折出一个五边形DMNPQ.

(Ⅰ)请写出图①中一组相等的线段                (写出一组即可);
(Ⅱ)若这样折出的五边形DMNPQ(如图③)恰好是一个正五边形,当AB=a,AD=b,DM=m时,有下列结论:
;         ②
;           ④.
其中,正确结论的序号是             (把你认为正确结论的序号都填上).
题型:不详难度:| 查看答案
如图,某高速公路建设中需要确定隧道AB的长度.当飞机在离地面高度CE=1500m时,测量人员从C处测得A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.732,结果保留整数).
题型:不详难度:| 查看答案
如图,∠ACB=60°,半径为1cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与AC也相切时,圆心O移动的水平距离是_____cm。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.