试题分析:(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA=∠POB,从而证明△PAO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论; (2)先证明△OAD∽△OPA,由相似三角形的性质得出OA与OD、OP的关系,然后将EF=2OA代入关系式即可; (3)根据题意可确定OD是△ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,由勾股定理解出x的值,从而能求出cos∠ACB,再由(2)可得OA2=OD•OP,代入数据即可得出PE的长. 试题解析:(1)如图,连接OB, ∵PB是⊙O的切线,∴∠PBO=90°. ∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB. 又∵PO=PO,∴△PAO≌△PBO(SAS). ∴∠PAO="∠PBO=90°." ∴直线PA为⊙O的切线.
(2)EF2=4OD•OP,证明如下: ∵∠PAO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°. ∴∠OAD="∠OPA." ∴△OAD∽△OPA. ∴,即OA2=OD•OP. 又∵EF=2OA,∴EF2=4OD•OP. (3)∵OA=OC,AD=BD,BC=6,∴OD=BC=3(三角形中位线定理). 设AD=x, ∵tan∠F=,∴FD=2x,OA=OF=2x﹣3. 在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32, 解得,x1=4,x2=0(不合题意,舍去).∴AD=4,OA=2x﹣3=5. ∵AC是⊙O直径,∴∠ABC=90°. 又∵AC=2OA=10,BC=6,∴cos∠ACB=. ∵OA2=OD•OP,∴3(PE+5)=25.∴PE=. |