已知:如图,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线与AB的延长线交于点D。若∠CAB=30°,AB=30,求BD的长。

已知:如图,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线与AB的延长线交于点D。若∠CAB=30°,AB=30,求BD的长。

题型:不详难度:来源:
已知:如图,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线与AB的延长线交于点D。若∠CAB=30°,AB=30,求BD的长。
答案
BD=15
解析

试题分析:作辅助线,连接OC,根据已知条件,可知∠COD的度数和OC的长;在Rt△OCD中,根据三角函数,可将OD的长求出,进而可将BD的长求出
解:连接OC,

∵CD是⊙O的切线,
∴OC⊥CD,且OC=OA=OB=AB=15,
∵∠CAB=30°,
∴∠COD=2∠CAB=60°,即∠D=30°,
∴在Rt△OCD中,OD=2OC=30,
∴BD=OD-OB=15..
点评:解答本题的关键是知道运用切线的性质来进行计算或论证,常通作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
举一反三
高致病性禽流感是比SARS传染速度更快的传染病,为了防止禽流感蔓延,政府规定离疫点3km范围内为扑杀区;离疫点3km—5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.
(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);
(2)求这条公路在免疫区内大约有多少千米?(=1.732,=2.236,结果精确到0.01km.)
题型:不详难度:| 查看答案
如图,点A、B在直线MN上,AB=11cm,⊙A、⊙B的半径为1cm. ⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0).
(1)当t=1时,AB=            cm;当t=6时,AB=            cm;
(2)问点A出发后多少秒两圆相切?
题型:不详难度:| 查看答案
如图,点A、B、C在⊙O上,∠AOB=40°,则∠ACB的度数是(    )

A. 10°       B. 20°     C. 40      D. 70°
题型:不详难度:| 查看答案
两圆半径R、r分别是方程的两根,且圆心距,则两圆的位置关系是(    )
A.外离B.外切C.内含D.外离或内含

题型:不详难度:| 查看答案
如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为        .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.