(2011•攀枝花)用半径为9cm,圆心角为120°的扇形纸片围成一个圆锥,则该圆锥的高为 cm.
题型:不详难度:来源:
(2011•攀枝花)用半径为9cm,圆心角为120°的扇形纸片围成一个圆锥,则该圆锥的高为 cm. |
答案
6 |
解析
扇形弧长为:L==6πcm, 设圆锥底面半径为r, 则:2πr=6π,所以,r=3cm, 因为圆锥的高与底面半径、圆锥母线构成直角三角形的三边, 设圆锥高为h,所以h2+r2=92, 即:h2=72,h=6cm, 所以圆锥的高为 6cm. 故答案为:6cm. |
举一反三
(本小题满分8分) 如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°.
(1)求图中阴影部分的面积; (2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.(3) 试判断⊙O中其余部分能否给(2)中的圆锥做两个底面。 |
如图,⊙O的半径为6cm,射线PM与⊙O相切于点C,且PC=16cm.
(1)请你作出图中线段PC的垂直平分线EF,垂足为Q,并求出QO的长; (2)在(1)的基础上画出射线QO,分别交⊙O于点A、B,将直线EF沿射线QM方向以5cm/s 的速度平移(平移过程中直线EF始终保持与PM垂直),设平移时间为t.当t为何值时,直线EF与⊙O相切? (3)直接写出t为何值时,直线EF与⊙O无公共点?t为何值时,直线EF与⊙O有两个公共点? |
若⊙O1的半径为3,⊙O2的半径为1,且O1O2=4,则⊙O1与⊙O2的位置关系是( ) |
如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点A,半径为r的⊙Q与直线y=mx、x轴分别相切于点T、E,且与直线l分别交于不同的M、N两点.
(1)当点A的坐标为(,p)时, ①填空:p=___,m= ___,∠AOE= ___. ②如图2,连接QT、QE,QE交MN于点F,当r=2时,试说明:以T、M、E、N为顶点的四边形是等腰梯形; (2)在图1中,连接EQ并延长交⊙Q于点D,试探索:对m、r的不同取值,经过M、D、N三点的抛物线y=ax2+bx+c,a的值会变化吗?若不变,求出a的值;若变化.请说明理由. |
将一个圆心角是90º的扇形围成一个圆锥的侧面,则该圆锥的侧面积S侧和底面 积S底的关系是【 】A.S侧=S底 | B.S侧=2S底 | C.S侧=3S底 | D.S侧=4S底 |
|
最新试题
热门考点