(11·十堰)如图,一个半径为的圆经过一个半径为4的圆的圆心,则图中阴影部分的面积为         。

(11·十堰)如图,一个半径为的圆经过一个半径为4的圆的圆心,则图中阴影部分的面积为         。

题型:不详难度:来源:
(11·十堰)如图,一个半径为的圆经过一个半径为4的圆的圆心,则图中阴影部分的面积为         。
答案
8
解析
考点:
分析:连接O1O2,O1A,O1B,O2A,O2B,由勾股定理得逆定理得∠O2O1A=∠O2O1B=90°,则点A、O1、B在同一条直线上,则AB是圆O1的直径,从的得出阴影部分的面积S阴影=
S1/2-S弓形AO1B=
S1/2-(S扇形AO2B-SAO2B).
解答:解:连接O1O2,O1A,O1B,O2A,O2B,

∵O1O2=O1A=2,O2A=4,
∴O1O22+O1A2=O2A2
∴∠O2O1A=90°,同理∠O2O1B=90°,
∴点A、O1、B在同一条直线上,并且∠AO2B=90°,
∴AB是圆O1的直径,
∴S阴影=S1/2-S弓形AO1B
=S1/2-(S扇形AO2B-SAO2B
=π(22/2-π×42/4+4×4/2=8
故答案为8.
点评:本题考查了扇形面积的计算、勾股定理和相交两圆的性质,解题的关键是发现阴影部分的面积的计算方法.
举一反三
(11·十堰)如图,AB是半圆O的直径,点C为半径OB上一点,过点C作CD⊥AB交半圆O于点D,将△ACD沿AD折叠得到△AED,AE交半圆于点F,连接DF。
(1)求证:DE是半圆的切线;
(2)连接OD,当OC=BC时,判断四边形ODFA的形状,并证明你的结论。
题型:不详难度:| 查看答案
(11·十堰)如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD于点E,B,连接BC,AC,构成△ABC,设AB=x.
(1)求x的取值范围;
(2)若△ABC为直角三角形,则x=      ;
(3)设△ABC的面积的平方为W,求W的最大值。
题型:不详难度:| 查看答案
(11·孝感)如图,某航天飞机在地球表面点的正上方处,从处观测到地球上的最远点,若∠=,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是(  )  
A.B.
C.D.

题型:不详难度:| 查看答案
(11·孝感)(满分10分)如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交的延长线于点M.
(1)填空:∠APC=______度,∠BPC=_______度;(2分)
(2)求证:△ACM≌△BCP;(4分)
(3)若PA=1,PB=2,求梯形PBCM的面积.(4分)
题型:不详难度:| 查看答案
(11·永州)如图,在⊙O中,直径CD垂直弦AB于点E,连接OB,CB,已知⊙O的半径为2,AB=,则∠BCD=________度.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.