某盏路灯照射的空间可以看成如图3所示的圆锥,它的高AO=8米,底面半径0B=6米,则圆锥的侧面积是________________平方米(结果保留;

某盏路灯照射的空间可以看成如图3所示的圆锥,它的高AO=8米,底面半径0B=6米,则圆锥的侧面积是________________平方米(结果保留;

题型:不详难度:来源:
某盏路灯照射的空间可以看成如图3所示的圆锥,它的高AO=8米,底面半径0B=6米,则圆锥的侧面积是________________平方米(结果保留
答案

解析
分析:根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S= lr,求得答案即可.
解答:解:∵AO=8米,OB=6米,∴AB=10米,
∴圆锥的底面周长=2×π×6=12π米,
∴S扇形=lr=×12π×10=60π米2
故答案为:60π.
举一反三
如图6,AB是⊙O的直径,BCAB于点B,连接OC交⊙O于   
E,弦ADOC
(1)求证:      ;
(2)求证:CD是⊙O的切线.

 


 
  
(图6)
题型:不详难度:| 查看答案
如图3,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB="10,CD=8,"

那么线段OE的长为(  )
A.5   B.4   
C.3 D.2

题型:不详难度:| 查看答案
如图6,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AC=2,则图中阴影部分的面积为_________(结果不去近似值).

题型:不详难度:| 查看答案
(6分)如图,在△ABC中,∠A=90°,∠B=60°,AB=3,点D从点A以每秒1个单位长度的速度向点B运动(点D不与B重合),过点D作DE∥BC交AC于点E.以DE为直径作⊙O,并在⊙O内作内接矩形ADFE,设点D的运动时间为秒.

(1)用含的代数式表示△DEF的面积S;
(2)当为何值时,⊙O与直线BC相切?
题型:不详难度:| 查看答案
如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°。

(1)求∠B的大小:
(2)已知圆心0到BD的距离为3,求AD的长。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.