△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2,同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2.

△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2,同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2.

题型:不详难度:来源:
△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2,同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2
答案

魔方格
证明:连接A1B,A1C,过A1做A1F⊥AC于F,A1E⊥AB于E,
∵连接A1B、A1C,
∵AA1平分∠BAC,
∴A1E=A1F,
∵A1在BC的中垂线上,
∴A1B=A1C,
∵∠BEA1=∠CFA1=90°,
∴Rt△A1EB~Rt△A1FC,
∴∠ABA1=∠A1CF,
∵∠A1CF+∠ACA1=180°,
∴∠ABA1+∠ACA1=180°,
∴A、B、A1、C四点共圆,
同理A、A2、B、C四点共圆,
从而知A1、A2都在△ABC的外接圆上,
∵AA1平分∠BAC,AA2平分∠MAB,
∴∠A2AA1=
1
2
×180°=90°,
∴A1A2是△ABC的外接圆的直径,
同理可证:B1B2、C1C2也是ABC的外接圆的直径,
∴A1A2=B1B2=C1C2
举一反三
设点M在正三角形三条高线上的射影分别是M1,M2,M3(互不重合).求证:△M1M2M3也是正三角形.
题型:不详难度:| 查看答案
AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.
题型:不详难度:| 查看答案
已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,PA=


3
,那么点P与⊙O的位置关系是(  )
A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定
题型:不详难度:| 查看答案
如图,已知点A在⊙O上,点B在⊙O外,求作一个圆,使它经过点B,并且与⊙O相切于点A.(要求写出作法,不要求证明)

魔方格
题型:不详难度:| 查看答案
△ABC中,∠C=90°,∠B=60°,AC=3,以C为圆心,r为半径作⊙C,如果点B在圆内,而点A在圆外,那么r的取值范围是______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.