如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC

如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC

题型:不详难度:来源:
如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:

第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);
第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;
第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)
则拼成的这个四边形纸片的周长的最小值和最大值分别为多少?
答案
画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示.
图中,N1N2=EN1+EN2=NB+NC=BC,
M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理),
又∵M1M2N1N2
∴四边形M1N1N2M2是一个平行四边形,
其周长为2N1N2+2M1N1=2BC+2MN.
∵BC=6为定值,
∴四边形的周长取决于MN的大小.
如答图2所示,是剪拼之前的完整示意图,
过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半,
∵M是线段PQ上的任意一点,N是线段BC上的任意一点,
根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4;
而MN的最大值等于矩形对角线的长度,即


PB2+BC2
=


42+62
=2


13

四边形M1N1N2M2的周长=2BC+2MN=12+2MN,
∴四边形M1N1N2M2周长的最小值为12+2×4=20,
最大值为12+2×2


13
=12+4


13

故四边形纸片的周长的最小值为20,最大值为12+4


13
举一反三
作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A、B、C的坐标分别为A(-2,1),B(-4,5),C(-5,2).
(1)作△ABC关于直线l:x=-1对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1
(2)写出点A1、B1、C1的坐标.
题型:不详难度:| 查看答案
(1)【原题呈现】如图,要在燃气管道l上修建一个泵站分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?
解决问题:请你在所给图中画出泵站P的位置,并保留作图痕迹;
(2)【问题拓展】已知a>0,b>0,且a+b=2,写出m=


a2+1
+


b2+4
的最小值;
(3)【问题延伸】已知a>0,b>0,写出以


a2+b2


a2+4b2


4a2+b2
为边长的三角形的面积.
题型:不详难度:| 查看答案
如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为(  )
A.2


3
B.2


6
C.3D.


6

题型:不详难度:| 查看答案
菱形是轴对称图形,它的对称轴是______.
题型:不详难度:| 查看答案
按下列要求正确画出图形:
(1)已知△ABC和直线PQ,画出△ABC关于直线PQ对称的△A′B′C′;
(2)已知△ABC和点O,画出△ABC关于点O成中心对称的△A′B′C′.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.