(本小题满分14分)如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.小题1:(1)若取AE的中点P,求证:

(本小题满分14分)如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.小题1:(1)若取AE的中点P,求证:

题型:不详难度:来源:
(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

小题1:(1)若取AE的中点P,求证:BP=CF;
小题2:(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
小题3:(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.
答案



小题1:解:(1)∵ AE = BE,AP = EP
∴ BE = 2PE,AB = 4PE,BP = 3PE…………(1分)
∵ AB = BC,BE =" BF     " ∴ BC = 4PE,BF = 2PE
∴ CF = 6PE…………(2分)       ∴
小题2:(2)存在…………(4分)
因为将绕点B顺时针方向旋转一周,E、F分别在以点B为圆心,BE为半径的圆周上,如图1,因此过A点做圆B的切线,设切点是点E,此时,有AE∥BF。
当圆B的切线AE在AB的右侧时,如图1
∵ AE∥BF∴∠AEB = ∠EBF = 90°     ∵ BE = AB∴∠BAE = 30°
∴∠ABE = 60°,即旋转角是60°…………(6分)
当圆B的切线AE在AB的左侧时,如图2
如图2,∵ AE∥BF
∴∠AEB + ∠EBF = 180°∴∠AEB = 90°
∵ BE = AB     ∴∠BAE = 30°
∴∠ABE = 60°,即旋转角是300°
小题3:(3)延长BP到点G,使BP=PG,连结AG
∴△APG ≌△BPE
∴ AG = BE,PG = BP,∠G = ∠PBE
∵ BE = BF   ∴ AG = BF
∵△BEF绕点B顺时针旋转  ∴∠ABE = ,∠CBF = 180°-
∵∠G = ∠PBE    ∴∠G + ∠ABP =
∴∠GAB = 180°-   ∴∠GAB = ∠CBF
又∵ AB = BC,AG = BF
∴△GAB ≌△FBC    ∴ BG = CF
    ∴…………(11分)
延长PB,与CF相交于点H
∵△GAB ≌△FBC    ∴∠ABP = ∠BCH
∵∠ABP + ∠CBH = 90°   ∴∠BCH + ∠CBH =90°
∴ BH⊥CF    即 BP⊥CF…………(14分)
解析

举一反三
(12分)已知△ABC在平面直角坐标系中的位置如图所示.

小题1:(1) 分别写出图中点A和点C的坐标;
小题2:(2) 画出△ABC绕点A按逆时针方向旋转90°后的△AB"C";
小题3:(3) 在(2)的条件下,求点C旋转到点C" 所经过的路线长(结果保留π).
题型:不详难度:| 查看答案
如图,正方形中,点F在边BC上,E在边BA的延长线上.

小题1:(1)若按顺时针方向旋转后恰好与重合.则旋转中心是点        ;最少旋转了         度;
小题2:(2)在(1)的条件下,若,求四边形的面积。
题型:不详难度:| 查看答案
如图所示,在△ABC中,若AB=5,AC=2,BAC=120°,以BC为边作等边三角形BCD,把△ABD绕D点按顺时针方向旋转60°到△ECD的位置。

小题1:(1)求BAD的度数;
小题2:(2)求AE的长。
题型:不详难度:| 查看答案
如图,以点为旋转中心,按逆时针方向旋转,得,则     三角形。
题型:不详难度:| 查看答案
如图,正方形网格中的每个小正方形的边长都是1,在平面直角坐标系中,已知,ΔABO的三个顶点的坐标分别为A(2,2),B(0,4),O(0,0);
小题1:画出ΔABO绕点O逆时针旋转900后得到的Δ0并写出点A,B的坐标;
小题2:求旋转过程中动点B所经过的路径长。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.