如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过

如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过

题型:不详难度:来源:
如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CEAB交直线l于点E,设直线l的旋转角为α.
(1)①当α=______度时,四边形EDBC是等腰梯形,此时AD的长为______;
②当α=______度时,四边形EDBC是直角梯形,此时AD的长为______;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
答案
(1)①当四边形EDBC是等腰梯形时,
∵∠EDB=∠B=60°,而∠A=30°,
∴α=∠EDB-∠A=30°,
∴△ADO是等腰三角形,
∴AD=OD,
过点O作OFBC,
∵BC⊥AC,
∴OF⊥AC,
∴OF是△ABC的中位线,
∴OF=
1
2
BC=1,
∵α=∠EDB-∠A=30°,
∴∠ODF=60°=∠DOF=60°,
∴△ODF是等边三角形,
∴OD=OF=DF=1,
∵∠A=∠α=30°,
∴AD=OD=1;

②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,
根据三角形的内角和定理,得α=90°-∠A=60°,此时,AD=
1
2
AC×


3
2
=1.5.

(2)当∠α=90°时,四边形EDBC是菱形.
∵∠α=∠ACB=90°,
∴BCED,
∵CEAB,
∴四边形EDBC是平行四边形.
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠A=30°,
∴AB=4,AC=2


3

∴AO=
1
2
AC
=


3

在Rt△AOD中,∠A=30°,OD=
1
2
AD,
AD=


AO2+OD2
=


(


3
)
2
+(
1
2
AD)
2

∴AD=2,
∴BD=2,
∴BD=BC.
又∵四边形EDBC是平行四边形,
∴四边形EDBC是菱形.
举一反三
在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=
1
2
S△ABC,④△DEF始终为等腰直角三角形.其中正确的是(  )
A.①②③④B.①②③C.①④D.②③

题型:不详难度:| 查看答案
在等腰直角△ABC中,∠C=90°,BC=2cm,如果以AC的中点0为旋转中心,将这个三角形旋转180°,点B落在点B′处,
(1)画出图形,并求出BB′的长度.
(2)四边形ABCB′是什么形状的四边形?说明理由.
题型:不详难度:| 查看答案
如图,在正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF,则:
(1)∠FDC与∠EBC的关系是______;
(2)△DCF能否与△BCE重合?______;
(3)BE和DF垂直吗?______.
题型:不详难度:| 查看答案
如图,点C是线段AB上任意一点,分别以AC、BC为边在同侧作等边△ACD和等边△BCE,连接BD、AE.
(1)试找出图中能够通过旋转完全重合的图形,并说明它是绕哪一点旋转?旋转了多少度?
(2)说出AE与DB有什么关系,试用旋转的性质说明上述关系成立的理由.
题型:不详难度:| 查看答案
填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______;
(2)如图③,若∠BAC=α,则∠AFB=______(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°-
1
2
α
;在图⑤中,∠AFB与∠α的数量关系是______.请你任选其中一个结论证明.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.