(1)①当四边形EDBC是等腰梯形时, ∵∠EDB=∠B=60°,而∠A=30°, ∴α=∠EDB-∠A=30°, ∴△ADO是等腰三角形, ∴AD=OD, 过点O作OF∥BC, ∵BC⊥AC, ∴OF⊥AC, ∴OF是△ABC的中位线, ∴OF=BC=1, ∵α=∠EDB-∠A=30°, ∴∠ODF=60°=∠DOF=60°, ∴△ODF是等边三角形, ∴OD=OF=DF=1, ∵∠A=∠α=30°, ∴AD=OD=1;
②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°, 根据三角形的内角和定理,得α=90°-∠A=60°,此时,AD=AC×=1.5.
(2)当∠α=90°时,四边形EDBC是菱形. ∵∠α=∠ACB=90°, ∴BC∥ED, ∵CE∥AB, ∴四边形EDBC是平行四边形. 在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2, ∴∠A=30°, ∴AB=4,AC=2, ∴AO=AC=. 在Rt△AOD中,∠A=30°,OD=AD, AD==, ∴AD=2, ∴BD=2, ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形. |