在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1、BC于D

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1、BC于D

题型:不详难度:来源:
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1、BC于D、F两点.

(1)如图①,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图②,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
答案
(1)EA1=FC.理由如下:
∵AB=BC,∴∠A=∠C,
∵△ABC绕点B顺时针旋转角α得△A1BC1
∴∠ABE=∠C1BF,AB=BC=A1B=BC1
在△ABE和△C1BF中,





∠A=∠C1
AB=BC1
∠ABE=∠C1BF

∴△ABE≌△C1BF(ASA),
∴BE=BF,
∴A1B-BE=BC-BF,
即EA1=FC;

(2)四边形BC1DA是菱形.理由如下:
∵旋转角α=30°,∠ABC=120°,
∴∠ABC1=∠ABC+α=120°+30°=150°,
∵∠ABC=120°,AB=BC,
∴∠A=∠C=
1
2
(180°-120°)=30°,
∴∠ABC1+∠C1=150°+30°=180°,
∠ABC1+∠A=150°+30°=180°,
∴ABC1D,ADBC1
∴四边形BC1DA是平行四边形,
又∵AB=BC1
∴四边形BC1DA是菱形;

(3)过点E作EG⊥AB,
∵∠A=∠ABA1=30°,
∴AG=BG=
1
2
AB=1,
在Rt△AEG中,AE=
AG
cos∠A
=
1
cos30°
=
2


3
3

由(2)知AD=AB=2,
∴DE=AD-AE=2-
2


3
3
举一反三
如图,在平面直角坐标系中,已知△ABC的顶点坐标A(0,4),B(-2,0),C(2,0).
(1)写出△DEF的顶点坐标;
(2)将△ABC变换至△DEF要通过什么变换?请说明;
(3)画出△ABC关于x轴的轴反射图形.
题型:不详难度:| 查看答案
已知:如图,在平面上将△ABC绕B点旋转到△A′BC′的位置时,AA′BC,∠ABC=70°,则∠CBC′为______度.
题型:不详难度:| 查看答案
下列图中的“笑脸”,由下图按逆时针方向旋转90°得到的是(  )
A.B.C.D.

题型:不详难度:| 查看答案
阅读材料:
如图(一),在已建立直角坐标系的方格纸中,图形①的顶点为A、B、C,要将它变换到图④(变换过程中图形的顶点必须在格点上,且不能超出方格纸的边界).
例如:将图形①作如下变换(如图二).
第一步:平移,使点C(6,6)移至点(4,3),得图②;
第二步:旋转,绕着点(4,3)旋转180°,得图③;
第三步:平移,使点(4,3)移至点O(0,0),得图④.
则图形①被变换到了图④.

解决问题:
(1)在上述变化过程中A点的坐标依次为:
(4,6)→(______,______)→(______,______)→(______,______)
(2)如图(三),仿照例题格式,在直角坐标系的方格纸中将△DEF经过平移、旋转、翻折等变换得到△OPQ.(写出变换步骤,并画出相应的图形)
题型:不详难度:| 查看答案
在图中的方格纸中,△ABC的顶点坐标分别为A(-4,2)、B(-1,3)、C(-3,4),△ABC中任意一点P的坐标为(a,b).
(1)△A1B1C1是由△ABC经过某种变换后得到的图形,观察它们对应点的坐标之间的关系,指出是怎样变换得到的?并写出点P对应点P1的坐标(用含a、b的代数式表示).
(2)作出△ABC关于原点O对称的△A2B2C2,并写出点P对应点P2的坐标(用含a、b的代数式表示).
(3)判断△A2B2C2能否看作是由△A1B1C1经过某种变换后得到的图形?若是,请指出是怎样变换得到的.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.