从数1,2,3,…,1995中任意取出n个不同的数(1≤n≤1995)形成一组叫做一个n元数组,如(1,2,3,4)就是一个四元数组,(4,8,12,20,32
题型:不详难度:来源:
从数1,2,3,…,1995中任意取出n个不同的数(1≤n≤1995)形成一组叫做一个n元数组,如(1,2,3,4)就是一个四元数组,(4,8,12,20,32)就是一个五元数组.现要给出一个自然数k,使得每一个k元数组中总能找到三个不同的数,此三数能构成一个三角形的三边长,则给出的k至少是多少时才能满足要求?证明你的结论. |
答案
k是3就可以. 如{3,4,5},是3元数组,且能构成三角形.故可以. |
举一反三
从1,2,…,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n的最小值. |
证明:对任意三角形,一定存在两条边,它们的长u,v满足1≤< |
在l到300这300个自然数中,不含有数字3的自然数有 ______个. |
由0、1、2、3、4、5、6这7个数字,可以组成 (1)多少个四位数,其中有多少个奇数,有多少个偶数? (2)多少个没有重复数字的四位数,其中有多少个奇数,多少个偶数? |
用数字0,1,2,3,4可以组成多少个 (1)四位数? (2)四位偶数? (3)没有重复数字的四位数? (4)没有重复数字的四位偶数? |
最新试题
热门考点