把一张纸片剪成4块,再从所得的纸片中取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止.那么下列四个数中可能是剪出的纸片数的是( )A.2009
题型:不详难度:来源:
把一张纸片剪成4块,再从所得的纸片中取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止.那么下列四个数中可能是剪出的纸片数的是( ) |
答案
第一次取k1块,则分为了4k1块,加上留下的(4-k1)块,共有4k1+4-k1=4+3k1=3(k1+1)+1块,第二次取k2块,则分为了4k2块,加上留下的(4+3k1-k2)块,共有4+3k1+3k2=3(k1+k2+1)+1块,…第n次取kn块,则分为了4kn块,共有4+3k1+3k2+3kn=3(k1+k2+k3+…+kn+1)+1块,从中看出,只要能够写成3k+1的形式,就能够得到. ∵2011=3×670+1故选C. |
举一反三
已知:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;…则1+3+5+…+99=______; |
(1)计算并观察下列各式:(x-1)(x+1)=______;(x-1)(x2+x+1)=______;(x-1)(x3+x2+x+1)=______; (2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x-1)(______)=x6-1; (3)利用你发现的规律计算:(x-1)(x6+x5+x4+x3+x2+x+1)=______; (4)利用该规律计算:1+3+32+33+…+32010. |
最新试题
热门考点