如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,…,已知正方形ABCD的面积S1为1,按上

如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,…,已知正方形ABCD的面积S1为1,按上

题型:同步题难度:来源:
如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…, Sn(n为正整数),那么第8个正方形的面积S8=(    ),Sn=(    )。
答案
128;2n-1
举一反三
观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子。
题型:同步题难度:| 查看答案
如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2,照此规律作下去,则S2011=(    )。
题型:同步题难度:| 查看答案
如图所示,L1与L2是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第三条直线L3, 那么这三条直线最多可有(    )个 交点;如果在这个平面内再画第4条直线L4,那么这4条直线最多可有(    )个交点,由此可以猜想,在同一平面内6条直线最多有(    )个交点,n(n 为大于1的整数)条直线最多可有(    )个交点(用含n的代数式表示)。
题型:同步题难度:| 查看答案
已知△ABC的周长为1,连结△ABC的三边中点构成第2个三角形,再连结第2个三角形的三边中点构成第3个三角形,依此类推,第2006个三角形的周长是[     ]
A.
B.
C.
D.
题型:同步题难度:| 查看答案
已知△ABC的周长为1,连结△ABC的三边中点构成第二个三角形,再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2007个三角形的周长是  [     ]
A.
B.
C.
D.
题型:同步题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.