(1)证明:∵AE⊥CE于E,AF⊥CF于F, ∴∠AEC=∠AFC=90°, 又∵CE、CF分别平分∠ACB与它的邻补角∠ACD, ∴∠BCE=∠ACE,∠ACF=∠DCF, ∴∠ACE+∠ACF=(∠BCE+∠ACE+∠ACF+∠DCF)=×180°=90°,
∴三个角为直角的四边形AECF为矩形;
(2)MN∥BC且MN=BC; 证明:∵四边形AECF为矩形, ∴对角线相等且互相平分, ∴NE=NC, ∴∠NEC=∠ACE=∠BCE, ∴MN∥BC, 又∵AN=CN(矩形的对角线相等且互相平分), ∴MN是△ABC的中位线, ∴MN=BC. |