函数f(x)=ax+2b1+x2是定义在(-1,1)上的奇函数,且f(1)=12.(1)求函数f(x)的解析式;(2)讨论函数f(x)的单调性;(3)解不等式f

函数f(x)=ax+2b1+x2是定义在(-1,1)上的奇函数,且f(1)=12.(1)求函数f(x)的解析式;(2)讨论函数f(x)的单调性;(3)解不等式f

题型:解答题难度:一般来源:不详
函数f(x)=
ax+2b
1+x2
是定义在(-1,1)上的奇函数,且f(1)=
1
2

(1)求函数f(x)的解析式;
(2)讨论函数f(x)的单调性;
(3)解不等式f(2-t)+f(
t
5
)<0
答案
(1)∵f(x)是定义在(-1,1)上的奇函数,
∴f(0)=0,
∴b=0,
∴f(x)=
ax
1+x2
,x∈(-1,1),
∵f(1)=
1
2

∴a=1,
则f(x)=
x
1+x2
,x∈(-1,1);
(2)任取x1,x2∈(-1,1),且x1<x2
f(x1)-f(x2)=
x1
1+x12
-
x2
1+x22
=
x1(1+x22)-x2(1+x12)
(1+x12)
=
(x1-x2)(1-x1x2)
(1+x12)(1+x22)

由x1<x2,得x1-x2<0,
由x1,x2∈(-1,1),得x1x2∈(-1,1),即1-x1x2>0,
∵1+x12≥1,1+x22≥1,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
则函数f(x)在(-1,1)上是增函数;
(3)∵f(x)在(-1,1)上是奇函数,
∴f(2-t)=-f(t-2),
∴f(
t
5
)<f(t-2),
又f(x)在(-1,1)上是增函数,





t
5
<t-2
-1<t-2<1
-1<
t
5
<1

解得:





t>
5
2
1<t<3
-5<t<5

则不等式的解集为(
5
2
,3).
举一反三
已知函数f(x)=
1
a
-
1
x
(a≠0,x≠0).
(1)求证:f(x)在(0,+∞)上是增函数;
(2)设F(x)=f(x)-a,且F(x)为奇函数,求a的值;
(3)若关于t(t≠0)的方程f(
1
t2
)=t4+1
有实数解,求a的取值范围.
题型:解答题难度:一般| 查看答案
设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x-2x+c(c为常数),则f(-1)=______.
题型:填空题难度:一般| 查看答案
已知函数y=f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数.若x1<0,x2>0,且x1+x2<-2,则f(-x1)与f(-x2)的大小关系是(  )
A.f(-x1)>f(-x2
B.f(-x1)<f(-x2
C.f(-x1)=f(-x2
D.f(-x1)与f(-x2)的大小关系不能确定
题型:单选题难度:简单| 查看答案
已知函数f(x)=
ax-1
ax+1
(a>1)

(1)判断函数的奇偶性;
(2)证明f(x)是R上的增函数.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).
(Ⅰ)当函数f(x)的图象过点(-1,0),且方程f(x)=0有且只有一个根,求f(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(Ⅲ)若F(x)=





f(x)x>0
-f(x)x<0
当mn<0,m+n>0,a>0,且函数f(x)为偶函数时,试判断F(m)+F(n)能否大于0?
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.