已知函数f(x)=log2(21-x-1),(1)判断函数y=f(x)的奇偶性,并说明理由;(2)若实数m满足f(2m-1)>f(1-m),求m 取值范围.

已知函数f(x)=log2(21-x-1),(1)判断函数y=f(x)的奇偶性,并说明理由;(2)若实数m满足f(2m-1)>f(1-m),求m 取值范围.

题型:解答题难度:一般来源:不详
已知函数f(x)=log2(
2
1-x
-1)

(1)判断函数y=f(x)的奇偶性,并说明理由;
(2)若实数m满足f(2m-1)>f(1-m),求m 取值范围.
答案
(1)函数是奇函数;
2
1-x
-1>0
,可得-1<x<1,即函数的定义域为(-1,1)
f(x)=log2(
2
1-x
-1)
=log2
1+x
1-x

∴f(-x)=log2
1-x
1+x
=-log2
1+x
1-x
=-f(x)
∴函数是奇函数;
(2)令y=
1+x
1-x
,则y′=
2
(1-x)2
>0,∴y=
1+x
1-x
在(-1,1)上单调递增
∴函数f(x)=log2(
2
1-x
-1)
在(-1,1)上单调递增
∵f(2m-1)>f(1-m),





-1<2m-1<1
-1<1-m<1
2m-1>1-m

解得
2
3
<m<1
举一反三
已知函数f(x)=4x-a•2x+1+9,x∈[0,2],
(1)当a=4,证明:函数y=f(x)是[0,2]上的单调递减函数;
(2)若函数y=f(x)是[0,2]上的单调函数,求a取值范围;
(3)若f(x)≥0在[0,2]上恒成立,求a取值范围.
题型:解答题难度:一般| 查看答案
下列函数中,既是偶函数,又在区间(-∞,0)上单调递增的是(  )
A.f(x)=2xB.f(x)=-
1
x
C.f(x)=x2+1D.f(x)=-x2+1
题型:单选题难度:一般| 查看答案
函数y=loga[(x-1)2-a]在[3,4]上单调递增,则实数a的取值范围是(  )
A.(
1
3
,1)
B.(
1
4
,1)
C.(1,3)D.(1,4)
题型:单选题难度:一般| 查看答案
已知幂函数y=f(x)的图象过点(2,4),则f(-3)=______.
题型:填空题难度:简单| 查看答案
若f(x+2)=x,则f(3)=______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.