设函数f(x)满足f(x)=f(4-x),当x>2时,f(x)为增函数,则a=f(1.10.9)、b=f(0.91.1)、c=f(log124)的大小关系是__

设函数f(x)满足f(x)=f(4-x),当x>2时,f(x)为增函数,则a=f(1.10.9)、b=f(0.91.1)、c=f(log124)的大小关系是__

题型:填空题难度:一般来源:不详
设函数f(x)满足f(x)=f(4-x),当x>2时,f(x)为增函数,则a=f(1.10.9)、b=f(0.91.1)、c=f(log
1
2
4
)的大小关系是______.
答案
由题意函数f(x)满足f(x)=f(4-x),当x>2时,f(x)为增函数
∴函数图象关于x=2对称,且函数(-∞,2)h上减,在(2,+∞)上增,
log
1
2
4
<0<0.91.1<1<1.10.9<2
∴c>b>a
故答案为c>b>a
举一反三
函数y=(
1
3
)x-log2(x+2)
在区间[-1,1]上的最大值为______.
题型:填空题难度:一般| 查看答案
函数f(x)=





ax2+1,x≥0
(a2-1)eax,x<0
在(-∞,+∞)
上单调,则a的取值范围是______.
题型:填空题难度:简单| 查看答案
已知定义在R+上的函数f(x)满足下列条件:①对定义域内任意x,y,恒有f(xy)=f(x)+f(y);②当x>1时f(x)<0;③f(2)=-1
(1)求f(8)的值;
(2)求证:函数f(x)在(0,+∞)上为减函数;
(3)解不等式:f(2x+2)-f(2x-4)<-3.
题型:解答题难度:一般| 查看答案
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:y=





1
3
x3-80x2+5040x,x∈[120,144)
1
2
x2-200x+80000,x∈[144,500)
,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获得,国家将给予补偿.
(I)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?
(II)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
题型:解答题难度:一般| 查看答案
已知函数y=


1-x
+


x+3
的最大值为M,最小值为m,则
m
M
的值为______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.