已知f(x)=x2-2017x+8052+|x2-2017x+8052|,则f(1)+f(2)+f(3)+…+f(2013)=______.
题型:填空题难度:一般来源:浙江模拟
已知f(x)=x2-2017x+8052+|x2-2017x+8052|,则f(1)+f(2)+f(3)+…+f(2013)=______. |
答案
x2-2017x+8052=(x-4)(x-2013), 当4≤x≤2013时,(x-4)(x-2013)≤0,当x<4或x>2013时,(x-4)(x-2013)>0, 所以f(x)= | 2(x-4)(x-2013),x<4或x>2013 | 0,4≤x≤2013 |
| | , 所以f(1)+f(2)+f(3)+…+f(2013)=f(1)+f(2)+f(3)=2(1-4)(1-2013)+2(2-4)(2-2013)+2(3-4)(3-2013)=24136. 故答案为:24136. |
举一反三
设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为______. |
已知函数f(x)=若f(2m+1)>f(m2-2),则实数m的取值范围是______. |
已知定义在R上的函数f(x)满足f(1)=1,f(1-x)=1-f(x),2f(x)=f(4x),且当0≤x1<x2≤1时,f(x1)≤f(x2),则f()等于( ) |
已知直线l:mx-2y+2m=0(m∈R)和椭圆C:+=1(a>b>0),椭圆C的离心率为,连接椭圆的四个顶点形成四边形的面积为2. (I)求椭圆C的方程; (II)设直线l经过的定点为Q,过点Q作斜率为k的直线l′与椭圆C有两个不同的交点,求实数k的取值范围; (Ⅲ)设直线l与y轴的交点为P,M为椭圆C上的动点,线段PM长度的最大值为f(m),求f(m)的表达式. |
最新试题
热门考点