已知函数f(x)=a•2x+a-22x+1,若函数f(x)满足f(-x)=-f(x).(1)求实数a的值.(2)判断函数的单调性.

已知函数f(x)=a•2x+a-22x+1,若函数f(x)满足f(-x)=-f(x).(1)求实数a的值.(2)判断函数的单调性.

题型:解答题难度:一般来源:不详
已知函数f(x)=
a•2x+a-2
2x+1
,若函数f(x)满足f(-x)=-f(x).
(1)求实数a的值.
(2)判断函数的单调性.
答案
(1)由题意,函数的定义域为R.…(2分)
∵f(-x)=-f(x),
∴f(-0)=-f(0),即f(0)=0.
2a-2
2
=0
.解得a=1                     …(6分)
(2)f(x)在定义域R上为增函数
任取x1,x2∈R,x1<x2,则2x12x2 …(7分)
则f(x1)-f(x2)=
2(2x1-2x2)
(2x1+1)(2x2+1)
<0
∴f(x1)<f(x2
∴f(x)在定义域R上为增函数.                 …(12分)
举一反三
设f(x)=x(x-1)(x+1),请问下列哪些选项是正确的?
(1)f(
1


2
)>0
(2)f(x)=2有整数解    (3)f(x)=x2+1有实数解   (4)f(x)=x有不等于零的有理数解
(5)若f(a)=2,则f(-a)=2.
题型:解答题难度:一般| 查看答案
函数y=e-x-ex满足(  )
A.奇函数,在(0,+∞)上是减函数
B.偶函数,在(0,+∞)上是减函数
C.奇函数,在(0,+∞)上是增函数
D.偶函数,在(0,+∞)上是增函数
题型:单选题难度:简单| 查看答案
偶函数y=f(x)(x∈R)在x<0时是增函数,若x1<0,x2>0且|x1|<|x2|,下列结论正确的是(  )
A.f(-x1)<f(-x2
B.f(-x1)>f(-x2
C.f(-x1)=f(-x2
D.f(-x1),f(-x2)的大小关系不能确定
题型:单选题难度:简单| 查看答案
已知函数f(x)在定义域(0.+∞)上是单调函数,若对于任意x∈(0,+∞),都有f(f(x)-
1
x
)=2,则f(
1
5
)的值是(  )
A.5B.6C.7D.8
题型:单选题难度:一般| 查看答案
设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y)且x>0时,f(x)<0,f(1)=-2.
(1)求证:y=f(x)是奇函数;    
(2)求证:函数y=f(x)在R上为减函数.
(3)试问在-3≤x≤3时,f(x)是否有最值?若有求出最值;若没有,说出理由.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.