已知a>0且a≠1,f(logax)=a(x2-1)x(a2-1).试判断f(x)在定义域上是否为单调函数?若是,是增函数还是减函数?并证明结论.
试题库
首页
已知a>0且a≠1,f(logax)=a(x2-1)x(a2-1).试判断f(x)在定义域上是否为单调函数?若是,是增函数还是减函数?并证明结论.
题型:解答题
难度:一般
来源:不详
已知a>0且a≠1,
f(lo
g
a
x)=
a(
x
2
-1)
x(
a
2
-1)
.
试判断f(x)在定义域上是否为单调函数?若是,是增函数还是减函数?并证明结论.
答案
是增函数.证明如下:
设t=log
a
x,则x=a
t
,
∴
f(t)=
a
a
2
-1
•
a
2t
-1
a
t
,
即
f(t)=
a
a
2
-1
(
a
t
-
a
-t
)
.
∴
f(t)=
a
a
2
-1
(
a
x
-
a
-x
)
.
∵f(x)的定义域为R,
设x
1
<x
2
,则
f(x
1
)-f(x
2
)=
a
a
2
-1
[(
a
x
1
-
a
-
x
1
)-(
a
x
2
-
a
-
x
2
)]
=
a
a
2
-1
•
(
a
x
1
-
a
x
2
)(1+
a
x
1
a
x
2
)
a
x
1
•
a
x
2
.
∵a>0,a≠1,
∴
a
x
1
a
x
2
>0,1+
a
x
1
a
x
2
>0
.
若0<a<1,则
a
x
1
>
a
x
2
,
a
x
1
-
a
x
2
>0
.
此时
a
a
2
-1
<0
,
∴f(x
1
)<f(x
2
).
同理,若a>1,则f(x
1
)<f(x
2
).
综上所述,当a>0且a≠1时,f(x)在R上单调递增.
举一反三
函数f(x)=ax
2
+2(a-1)x+2在区间(-∞,4]上为减函数,则a的取值范围为( )
A.0<a≤
1
5
B.0≤a≤
1
5
C.0<a<
1
5
D.a>
1
5
题型:单选题
难度:简单
|
查看答案
已知函数f(x)=
2
x
-x
m
,且f(4)=-
7
2
.
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明.
题型:解答题
难度:一般
|
查看答案
已知函数y=f(x)在R上是增函数,且f(2m+1)>f(3m-4),则m的取值范围是( )
A.(-∞,5)
B.(5,+∞)
C.(-5,+∞)
D.(-∞,5)
题型:单选题
难度:一般
|
查看答案
已知函数f(x)=
x
2
+ax+a
x
,且a<1.
(1)当x∈[1,+∞)时,判断f(x)的单调性并证明;
(2)在(1)的条件下,若m满足f(3m)>f(5-2m),试确定m的取值范围.
(3)设函数g(x)=x•f(x)+|x
2
-1|+(k-a)x-a,k为常数.若关于x的方程g(x)=0在(0,2)上有两个解x
1
,x
2
,求k的取值范围,并比较
1
x
1
+
1
x
2
与4的大小.
题型:解答题
难度:一般
|
查看答案
f(x)=
x
2
(x>0)
π(x=0)
0(x<0)
,则f{f[f(-2009)]等于( )
A.π
2
B.9
C.π
D.0
题型:单选题
难度:简单
|
查看答案
最新试题
It took people as well as time to build the pyrami
读图,完成下列各题。 (共16分,每空2分。)(1)从性质上看,甲图中A是 气团,B是___气团。 C、D、
阿伏加德罗常数约为6.02×1023mol-1,下列叙述中正确的是A.0.5g C3H4中含有共用电子对的数目为0.1×
读下侧的三角形坐标图,回答1-2题。1.如果a、b、c分别代表影响工业区位的原料因素、能源因素、市场因素,则下列最能代表
—What happened to him? —He was _____ of stealing the ring at
某兴趣小组设计并进行了以下实验来探究Cl2、漂白粉的制备及有关性质。(1)实验室拟用下列装置制备干燥纯净的氯气,请按照气
要使(6x﹣a)(2x+1)的结果中不含x的一次项,则a等于 [ ]A.0B.1C.2D.3
材料一:《儒林外史》中的范进,寒窗苦读几十载,屡试不第,不想54岁时,忽报金榜题名,面对梦寐以求的喜讯,极度高兴,以致喜
二次函数y=-2x2+x-12,当x=______时,y有最______值,为______.它的图象与x轴______交
小题1:How are you today? - I"m feeling much____ (bad) than y
热门考点
世界上第一个社会主义国家的最后一任***是[ ]A、戈尔巴乔夫 B、列宁 C、斯大林
实验室做化学实验,发生下列事故,处理方法不正确的是( )A.金属钠着火,用泡沫灭火器扑灭B.实验台上的酒精灯碰翻着火,
Hearing the news about the crash of Air France Flight 447, h
下列离子方程式书写正确的是A.碳酸钙与醋酸反应:CaCO3+2H+=Ca2++CO2↑+H2OB.氯气通入水中:Cl2+
启蒙运动的核心思想主张是[ ]A、肯定人,注重人性B、把人从宗教束缚中解放出来C、理性主义D、批判专制和特权,追
However, the southern part of Ireland was unwilling and ____
完形填空。 Two traveling angels stopped to spend the night in
在Rt△ABC中,∠C=90°,∠B=∠A,则AB= AC.
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知函数和函数,那么函数和函数
陆地面积占地球表面积的( )A.71%B.29%C.50%D.100%
凡尔登战役
代数式的值
海洋地理
实验:验证机械能守恒定律
现在完成时
罗马天主教廷
法国是重要的农产品出口国
实验:用单摆测重力加速度
中东的石油资源
弦函数的诱导公式
超级试练试题库
© 2017-2019 超级试练试题库,All Rights Reserved.