①∵a>b,根据正弦定理得sinA>sinB, ∴f(x)=(sinA-sinB)•x在R上是增函数,故正确; ②∵a2-b2=(acosB+bcosA)2 ∴a2-b2=(acosB+bcosA)2=a2cos2B+2abcosBcosA+b2cos2A, 整理得a2sin2B=2abcosBcosA+b2(1+cos2A), 即sin2Asin2B=2sinAsinBcosBcosA+sin2B(1+cos2A), sinA(sinAsinB-cosBcosA)=sinB+cosA(sinAcosB+sinBcosA) sinAcosC=sinB+cosAsinC,∴sin(A-C)=sin(A+C), ∴A-C+A+C=π,即A=,故△ABC是Rt△;正确; ③cosC+sinC=sin(c+), ∵0<C<π,∴<C+< ∴cosC+sinC∈(- 1, ],故cosC+sinC的最小值为-;错; ④∵cosA=cosB,且0<A、B<π,y=cosx在[0,π]上单调递减, ∴A=B;故正确; ⑤∵(1+tanA)(1+tanB)=2, ∴1+tanAtanB+tanB+tanA=2,即tan(A+B)(1-tanAtanB)+tanAtanB=1 ∴tan(A+B)=1,∴A+B=kπ+,故错; 故①②④正确. 故答案为:①②④ |