对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)•f(x2);②f(x1•x2)=f(x1)+f(x2);③f

对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)•f(x2);②f(x1•x2)=f(x1)+f(x2);③f

题型:填空题难度:一般来源:不详
对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
f(x1)-f(x2)
x1-x2
>0;
f(
x1+x2
2
)<
f(x1)+f(x2)
2

当f(x)=lgx时,上述结论中正确结论的序号是______.
答案
①f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=lgx1•lgx2
②f(x1•x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2
③f(x)=lgx在(0,+∞)单调递增,则对任意的0<x1<x2,d都有f(x1)<f(x2
f(x1)-f(x2)
x1-x2
>0

f(
x1+x2
2
)=lg
x1+x2
2
f(x1)+f(x2)
2
=
lgx1+lgx2
2
=
lgx1x2
2

x1+x2
2


x1x2
lg
x1+x2
2
≥lg


x1x2
=
1
2
lgx1x2

故答案为:②③
举一反三
函数y=log
1
2
(x2-x-6)
的单调递增区间是______.
题型:填空题难度:简单| 查看答案
已知函数f(x)定义在(-1,1)上,对于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且当x<0时,f(x)>0;
(1)判断f(x)的奇偶性并说明理由;
(2)若f(
a+b
1+ab
)=1,f(
a-b
1-ab
)=2
,且|a|<1,|b|<1,求f(a),f(b)的值.
(3)若f(-
1
2
)=1
,试解关于x的方程f(x)=-
1
2
题型:解答题难度:一般| 查看答案
设函数f(x)=x2+|2x-a|(x∈R,a为实数).
(1)若f(x)为偶函数,求实数a的值; 
(2)设a>2,求函数f(x)的最小值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=2x+
a
x
的定义域为(0,2](a为常数).
(1)证明:当a≥8时,函数y=f(x)在定义域上是减函数;
(2)求函数y=f(x)在定义域上的最大值及最小值,并求出函数取最值时x的值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x+
1
x

(Ⅰ) 证明f(x)在[1,+∞)上是增函数;
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.