已知函数f(x)=ax(x<0)(a-3)x+4a(x≥0),满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则a的取值范围是______.

已知函数f(x)=ax(x<0)(a-3)x+4a(x≥0),满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则a的取值范围是______.

题型:填空题难度:简单来源:不详
已知函数f(x)=





ax(x<0)
(a-3)x+4a(x≥0)
,满足对任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0
成立,则a的取值范围是______.
答案
对于不等式
f(x1)-f(x2)
x1-x2
<0

当x1<x2时,就有:x1-x2<0
所以:f(x1)-f(x2)>0
即说明函数f(x)在定义域R内为减函数 ①
当x<0时,f(x)=ax
所以,f"(x)=axlna<0
则0<a<1…(1)②
当x≥0时,f(x)=(a-3)x+4a
所以,f"(x)=a-3<0
则a<3…(2)
而,要保证在整个R上f(x)均为减函数
所以:在x趋近于0的时候,ax≥(a-3)x+4a
lim
x→0
f(x)=
lim
x→0
ax=1
f(x)=
lim
x→0
(a-3)x+4a=4a
所以,1≥4a
则,a≤
1
4
…(3)
联立(1)(2)(3)得到:
0<a≤
1
4

故答案为:(0,
1
4
]
举一反三
已知函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正常数),且函数f(x)与g(x)的图象在y轴上的截距相等.
(I)求a的值;
(II)求函数h(x)=f(x)+g(x)的单调递增区间.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ln(x+


x2+1
),若实数a,b满足f(a)+f(b-1)=0,则a+b等于______.
题型:填空题难度:一般| 查看答案
已知f(x)=x|x-a|+2x-3.
(Ⅰ)当a=4,2≤x≤5时,问x分别取何值时,函数f(x)取得最大值和最小值,并求出相应的最大值和最小值;
(Ⅱ)若f(x)在R上恒为增函数,试求a的取值范围.
题型:解答题难度:一般| 查看答案
(1)设f(x)=x4+ax3+bx2+cx+d,其中a、b、c、d是常数.如果f(1)=10,f(2)=20,f(3)=30,求f(10)+f(-6)的值;
(2)若不等式2x-1>m(x2-1)对满足-2≤m≤2的所有m都成立,求x的取值范围.
题型:解答题难度:一般| 查看答案
下列函数,在区间(0,+∞)上为增函数的是______.
①y=3-2x   ②y=x2-1   ③y=
1
x
④y=-|x|
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.