已知定义在R的奇函数f(x),在[0,+∞)上单调递减,且f(2-a)+f(1-a)<0,则a的取值范围是(  )A.(32,2]B.(32,+∞)C.[1,3

已知定义在R的奇函数f(x),在[0,+∞)上单调递减,且f(2-a)+f(1-a)<0,则a的取值范围是(  )A.(32,2]B.(32,+∞)C.[1,3

题型:单选题难度:简单来源:不详
已知定义在R的奇函数f(x),在[0,+∞)上单调递减,且f(2-a)+f(1-a)<0,则a的取值范围是(  )
A.(
3
2
,2]
B.(
3
2
,+∞)
C.[1,
3
2
)
D.(-∞,
3
2
)
答案
因为f(2-a)+f(1-a)<0得f(2-a)<-f(1-a),
因为函数为奇函数,所以f(-x)=-f(x),则-f(1-a)=f(a-1).
所以f(2-a)<f(a-1),
根据函数在[0,+∞)上单调递减可知2-a>a-1,解得a<
3
2

故选D
举一反三
给出下列四个函数:①f(x)=x+1,=2 ②f(x)=
1
x
,③f(x)=x2,④f(x)=sinx,其中在(0,+∞)是增函数的有(  )
A.0个B.1个C.2个D.3个
题型:单选题难度:一般| 查看答案
已知函数f(x)=(2x-2-x)m+(x3+x)n+x2-1(x∈R)
(1)求证:函数g(x)=f(x)-x2+1是奇函数;
(2)若f(2)=8,求f(-2)的值.
题型:解答题难度:一般| 查看答案
对于函数f(x),定义域为D,若存在x0∈D使f(x0)=x0,则称(x0,x0)为f(x)的图象上的不动点. 由此,函数f(x)=
9x-5
x+3
的图象上不动点的坐标为 ______.
题型:填空题难度:一般| 查看答案
已知:函数f(x)=ax+
b
x
+c
(a、b、c是常数)是奇函数,且满足f(1)=
5
2
,f(2)=
17
4

(Ⅰ)求a、b、c的值;
(Ⅱ)试判断函数f(x)在区间(0,
1
2
)
上的单调性并证明.
题型:解答题难度:一般| 查看答案
函数f(x)=
x
x+1
的单调增区间是(  )
A.(-∞,-1)B.(-1,+∞)
C.(-∞,-1)∪(-1,+∞)D.(-∞,-1)和(-1,+∞)
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.