已知:函数f(x)=ax+bx+c(a、b、c是常数)是奇函数,且满足f(1)=52,f(2)=174,(Ⅰ)求a、b、c的值;(Ⅱ)试判断函数f(x)在区间(

已知:函数f(x)=ax+bx+c(a、b、c是常数)是奇函数,且满足f(1)=52,f(2)=174,(Ⅰ)求a、b、c的值;(Ⅱ)试判断函数f(x)在区间(

题型:解答题难度:一般来源:不详
已知:函数f(x)=ax+
b
x
+c
(a、b、c是常数)是奇函数,且满足f(1)=
5
2
,f(2)=
17
4

(Ⅰ)求a、b、c的值;
(Ⅱ)试判断函数f(x)在区间(0,
1
2
)
上的单调性并证明.
答案
(1)∵f(-x)=-f(x)∴c=0∵





f(1)=
5
2
f(2)=
17
4






a+b=
5
2
2a+
b
2
=
17
4





a=2
b=
1
2

(2)∵由(1)问可得f(x)=2x+
1
2x

f(x)=2x+
1
2x
在区间(0,0.5)上是单调递减的
证明:设任意的两个实数0<x1x2
1
2

f(x1)-f(x2)=2(x1-x2)+
1
2x1
-
1
2x2
=2(x1-x2)+
(x2-x1)
2x1x2

=
(x2-x1)(1-4x1x2)
2x1x2

又∵0<x1x2
1
2

∴x1-x2<00<x1x2
1
4
,1-4x1x2>0f(x1)-f(x2)>0
f(x)=2x+
1
2x
在区间(0,0.5)上是单调递减的.
举一反三
函数f(x)=
x
x+1
的单调增区间是(  )
A.(-∞,-1)B.(-1,+∞)
C.(-∞,-1)∪(-1,+∞)D.(-∞,-1)和(-1,+∞)
题型:单选题难度:简单| 查看答案
已知函数f(x)=
ax+b
x2+1
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

①确定函数的解析式;
②用单调性的定义,证明f(x)在(0,1)上是增函数.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax2+bx+c满足f(1)=1,f(-1)=-1.(1)求实数b值;(2)若不等式f(x)≥-2恒成立,求实数a的取值范围;(3)设函数y=f(x)存在最大值M(a),求M(a)的最小值.
题型:解答题难度:一般| 查看答案
函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R,H(x)=





f(x)
0
(x>0)
(x=0)
-f(x)(x<0)

(1)若f(-1)=0,且方程ax2+bx+1=0(a≠0)有唯一实根,求H(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k取值范围;
(3)设a=1且b=0,解关于m的不等式:H(m2+2)+H(3m)>0.
题型:解答题难度:一般| 查看答案
已知f(x)是定义在R上的奇函数,当x>0时,f(x)为增函数,且f(3)=0那么不等式xf(x)<0的解集是(  )
A.(-3,-1)∪(1,3)B.(-3,0)∪(3,+∞)C.(-3,0)∪(0,3)D.(-∞,-3)∪(0,3)
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.