定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m、n∈R恒成立,当x>0时,f(x)>2.(Ⅰ) 求证f(x)在R上是单调递增函数;(

定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m、n∈R恒成立,当x>0时,f(x)>2.(Ⅰ) 求证f(x)在R上是单调递增函数;(

题型:解答题难度:一般来源:不详
定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m、n∈R恒成立,当x>0时,f(x)>2.
(Ⅰ) 求证f(x)在R上是单调递增函数;
(Ⅱ)已知f(1)=5,解关于t的不等式f(|t2-t|)≤8;
(Ⅲ)若f(-2)=-4,且不等式f(t2+at-a)≥-7对任意t∈[-2,2]恒成立.求实数a的取值范围.
答案
证明:(Ⅰ)∀x1,x2∈R,当x1<x2时,x2-x1>0,
∴f(x2-x1)>2f(x1)-f(x2
=f(x1)-f(x2-x1+x1
=f(x1)-f(x2-x1)-f(x1)+2
=2-f(x2-x1)<0,
所以f(x1)<f(x2),
所以f(x)在R上是单调递增函数…(4分)
(Ⅱ)∵f(1)=5,
∴f(2)=f(1)+f(1)-2=8,
由f(|t2-t|)≤8得f(|t2-t|)≤f(2)
∵f(x)在R上是单调递增函数,所以|t2-t|≤2⇒-2≤t2-t≤2⇔





t2-t≤2
t2-t≥-2





-1≤t≤2
t∈R
⇒t∈[-1,2]
…(8分)
(Ⅲ)由f(-2)=-4得-4=f(-2)=f(-1)+f(-1)-2⇒f(-1)=-1
所以f(-3)=f(-2)+f(-1)=-4-1-2=-7,
由f(t2+at-a)≥-7得f(t2+at-a)≥f(-3)
∵f(x)在R上是单调递增函数,
所以t2+at-a≥-3⇒t2+at-a+3≥0对任意t∈[-2,2]恒成立.
记g(t)=t2+at-a+3(-2≤t≤2)
只需gmin(t)≥0.对称轴t=-
a
2

(1)当-
a
2
≤-2⇒a≥4
时,gmin(t)=g(-2)=4-2a-a+3≥0⇒a≤
7
3
与a≥4矛盾.
此时a∈ϕ
(2)当-2<-
a
2
<2⇒-4<a<4
时,gmin(t)=
4(3-a)-a2
4
≥0⇒-6≤a≤2

又-4<a<4,所以-4<a≤2
(3)当-
a
2
≥2⇒a≤-4
时,gmin(t)=g(2)=4+2a-a+3≥0⇒a≥-7
又a≤-4
∴-7≤a≤-4
综合上述得:a∈[-7,2]…(14分)
举一反三
已知函数f(x)=-x2+mx+1,当x∈[2,+∞)时,函数为减函数,则m的取值范围是 ______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=





2x+1,x<1
x2+ax,x≥1
,若f[f(0)]=4a,则实数a等于(  )
A.
1
2
B.
4
5
C.2D.9
题型:单选题难度:简单| 查看答案
设函数f(x)=
2x-1
2x+1
(x∈R),g(x)=x+
4
x
-
29
9
(x∈(0,2])
(Ⅰ)求证:f(x)是奇函数,g(x)在区间(0,2]上是单调递减函数;
(Ⅱ)若f(m)<g(x)对任意x∈(0,2]恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
下列说法中,正确的是______.
①任取x∈R都有3x>2x
②当a>1时,任取x∈R都有ax>a-x
③y=(


3
-x是增函数;
④y=2|x|的最小值为1;
⑤在同一坐标系中,y=2x与y=(
1
2
)x
的图象关于y轴对称.
题型:填空题难度:一般| 查看答案
下列函数f(x)中,满足“对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)的是(  )
A.f(x)=
1
x
B.f(x)=(x-1)2C.f(x)=exD.f(x)=ln(x+1)
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.