按照某学者的理论,假设一个人生产某产品单件成本为a元,如果他卖出该产品的单价为m元,则他的满意度为;如果他买进该产品的单价为n元,则他的满意度为。如果一个人对两

按照某学者的理论,假设一个人生产某产品单件成本为a元,如果他卖出该产品的单价为m元,则他的满意度为;如果他买进该产品的单价为n元,则他的满意度为。如果一个人对两

题型:解答题难度:困难来源:期末题
按照某学者的理论,假设一个人生产某产品单件成本为a元,如果他卖出该产品的单价为m元,则他的满意度为;如果他买进该产品的单价为n元,则他的满意度为。如果一个人对两种交易(卖出或买进)的满意度分别为h1和h2,则他对这两种交易的综合满意度为,现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为mA元和mB元,甲买进A与卖出B的综合满意度为h,乙卖出A与买进B的综合满意度为h
(1)求h和h关于mA,mB的表达式;当mA=mB时,求证:h=h
(2)设mA=mB,当mA,mB分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?
(3)记(2)中最大的综合满意度为h0,试问能否适当选取mA,mB的值,使得h≥h0和h≥h0同时成立,但等号不同时成立?试说明理由.
答案
解:(1)
当mA=mB时,


显然h=h
(2)当mA=mB时,

,得
故当,即mB=20,mA=12时,甲、乙两人同时取到最大的综合满意度为
(3)由(2)知


,则,即
同理,由,得
另一方面,

当且仅当x,即时取等号,
所以不能适当选取mA,mB的值,使得h≥h0和h≥h0同时成立,但等号不同时成立.
举一反三
已知函数f(x)对任意的m,n∈R都有f(m+n)=f(m)+f(n)-1,并且当x>0时,f(x)>1,
(1)求证:f(x)是R上的增函数;
(2)若f(3)=4且a>0,解关于x的不等式:f()>2。
题型:解答题难度:一般| 查看答案
已知函数f(x)的定义域为A,如果对于属于定义域内某个区间I上的任意两个不同的自变量x1,x2,都有,则 [     ]
A.f(x)在这个区间上为增函数
B.f(x)在这个区间上为减函数
C.f(x)在这个区间上的增减性不变
D.f(x)在这个区间上为常函数
题型:单选题难度:简单| 查看答案
下列说法中正确的有
①若x1,x2∈I,当x1<x2时,f(x1)<f(x2),则y=f(x)在I上是增函数;
②函数y=x2在R上是增函数;
③函数y=在定义域上是增函数;
④y=的单调区间是(-∞,0)∪(0,+∞). [     ]
A.0个
B.1个
C.2个
D.3个
题型:单选题难度:简单| 查看答案
下列函数中,在区间(0,1)上是增函数的是[     ]
A.y=|x|
B.y=3-x
C.y=
D.y=-x2+4
题型:单选题难度:简单| 查看答案
设(a,b),(c,d)都是函数f(x)的单调增区间,且x1∈(a,b),x2∈(c,d),x1<x2,则f(x1)与f(x2)的大小关系是 [     ]
A.f(x1)<f(x2)
B.f(x1)>f(x2)
C.f(x1)=f(x2)
D.不能确定
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.