设f(x)是R上的奇函数,且在(0,+∞)上递增,若f(12)=0,f(log4x)>0,那么x的取值范围是(  )A.12<x<1B.x>2C.x>2或12<

设f(x)是R上的奇函数,且在(0,+∞)上递增,若f(12)=0,f(log4x)>0,那么x的取值范围是(  )A.12<x<1B.x>2C.x>2或12<

题型:单选题难度:一般来源:不详
设f(x)是R上的奇函数,且在(0,+∞)上递增,若f(
1
2
)=0,f(log4x)>0,那么x的取值范围是(  )
A.
1
2
<x<1
B.x>2
C.x>2或
1
2
<x<1
D.
1
2
<x<1或1<x<2
答案
因为f(x)为R上的奇函数,在(0,+∞)上递增,且f(
1
2
)=0,
所以f(x)>0的解集为A={x|-
1
2
<x<0或x>
1
2
}.
由f(log4x)>0,得log4x∈A,即-
1
2
<log4x<0
log4x>
1
2

解得
1
2
<x<1
或x>2.
故选C.
举一反三
函数f(x)=x+sinx(x∈R)(  )
A.是偶函数,且在(-∞,+∞)上是减函数
B.是偶函数,且在(-∞,+∞)上是增函数
C.是奇函数,且在(-∞,+∞)上是减函数
D.是奇函数,且在(-∞,+∞)上是增函数
题型:单选题难度:简单| 查看答案
y=f(x)是定义在R上的偶函数且在[0,+∞)上递增,不等式f(
x
x+1
)<f(-
1
2
)
的解集为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=x3-ax , g(x)=
1
2
x2-lnx-
5
2

(1)若g(x)与f(x)在同一点处有相同的极值,求实数a的值;
(2)对一切x∈(0,+∞),有不等式f(x)≥2x•g(x)-x2+5x-3,恒成立,求实数a的取值范围;
(3)记G(x)=
1
2
x3-
5
2
x-xg(x)+
1
2
求证:当x≥1时,总有G(x)≤
1
2
x2成立
题型:解答题难度:一般| 查看答案
设定义在区间[22-a-2,2a-2]上的函数f(x)=3x-3-x是奇函数,则实数a的值是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=
eax
x2+
x
a
+
1
a
-
3e2
49
(a∈R,a≠0,),g(x)=bx(b∈R)

(1)当a>
1
4
时,求f(x)的单调区间;
(2)当a=1时,若在区间[2,+∞)上存在一点x0,使得f(x0)<g(x0)成立,求b的取值范围.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.