对于函数f(x)=acosx+bx2+c,其中a,b,c∈R,适当地选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果只可能是(  )A.4和6B

对于函数f(x)=acosx+bx2+c,其中a,b,c∈R,适当地选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果只可能是(  )A.4和6B

题型:单选题难度:一般来源:不详
对于函数f(x)=acosx+bx2+c,其中a,b,c∈R,适当地选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果只可能是(  )
A.4和6B.3和-3C.2和4D.1和1
答案
因为函数f(x)=acosx+bx2+c,
所以f(-x)=acos(-x)+b(-x)2+c=acosx+bx2+c=f(x),
函数是偶函数,
所以f(1)=f(-1),
考察选项可知,
适当地选取a,b,c的一组值计算f(1)和f(-1),只能是D.
故选D.
举一反三
下列函数中既是奇函数,又在区间(0,+∞)上单调递增的是(  )
A.y=sinxB.y=-x2C.y=xlg2D.y=(
1
4
x
题型:单选题难度:简单| 查看答案
设函数f(x)在(-∞,+∞)上满足f(x)=f(4-x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0,则函数f(x)的最小正周期为______,方程f(x)=0在闭区间[-2005,2005]上有______个根.
题型:填空题难度:一般| 查看答案
已知函数f(x)=
x2+kx+1
x2+x+1
(x≥0).
(1)若f(x)>0恒成立,求实数k的取值范围;
(2)若对任意非负实数a,b,c,以f(a),f(b),f(c)为三边都可构成三角形,求实数k的取值范围.
题型:解答题难度:一般| 查看答案
下列函数中既是偶函数,又是区间[-1,0]上的减函数的是(  )
A.y=cosxB.y=-|x-1|C.y=ln
2-x
2+x
D.y=|tanx|
题型:单选题难度:一般| 查看答案
下列函数:①f(x)=2x4+3x2;②f(x)=x3-2x;③f(x)=
x2+1
x
;④f(x)=x2+1其中是偶函数的个数有(  )
A.1B.2C.3D.4
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.