已知函数f(x)=1+1x-1,g(x)=f(2|x|).(1)判断函数f(x)和g(x)的奇偶性,并说明理由;(2)证明函数g(x)在(-∞,0)上为增函数;

已知函数f(x)=1+1x-1,g(x)=f(2|x|).(1)判断函数f(x)和g(x)的奇偶性,并说明理由;(2)证明函数g(x)在(-∞,0)上为增函数;

题型:解答题难度:一般来源:不详
已知函数f(x)=1+
1
x-1
,g(x)=f(2|x|)

(1)判断函数f(x)和g(x)的奇偶性,并说明理由;
(2)证明函数g(x)在(-∞,0)上为增函数;
(3)若关于x关于的不等式g(x)<
m
m+1
在x∈(1,+∞)时恒成立,求m的取值范围.
答案
(1)∵函数f(x)的定义域为{x|x∈R且x≠1},
∴函数f(x)为非奇非偶函数,
又∵g(x)=f(2|x|)=1+
1
2|x|-1

∴函数g(x)的定义域{x|x∈R且x≠0},
g(-x)=1+
1
2|-x|-1
=1+
1
2|x|-1
=g(x)

所以g(x)为偶函数.
(2)设x1,x2∈(-∞,0),且x1<x2
g(x1)-g(x2)=
1
2|x1|-1
-
1
2|x2|-1
=
2|x2|-2|x1|
(2|x1|-1)(2|x2|-1)

∵x1,x2∈(-∞,0),且x1<x2
∴|x1|>|x2|>0
2|x1|2|x2|2|x2|-2|x1|<02|x1|-1>0,2|x2|-1>0
所以g(x1)<g(x2),所以函数g&n的sp;(x)在(-∞,0)上为增函数.
(3)由(1)(2),知函数在(1,+∞)上单调递减,
∴g(x)<g(1)=2,
∵不等式g(x)<
m
m+1
在x∈(1,+∞)时恒成立,
m
m+1
≥2
,解口-2≤m<-1.
所以m的取值范围是{m|-2≤m<-1}.
举一反三
若函数y=x2+(a+2)x+3,x∈[a,b]的图象关于直线x=1对称,则b=______.
题型:填空题难度:一般| 查看答案
已知定义在R上的函数f(x)对于任意的x∈R,都有f(x+2)=-f(x)成立,设an=f(n),则数列{an}中值不同的项最多有44项.
题型:填空题难度:一般| 查看答案
已知an=2-n+3,bn=2n-1,则满足anbn+1>an+bn的正整数n的值为______.
题型:填空题难度:一般| 查看答案
设函数f(x),g(x)的定义域分别为Df,Dg,且Df,DE.若对于任意x∈Df,都有g(x)=f(x),则称函数g(x)为f(x)在Dg上的一个延拓函数.设f(x)=2x(x≤0),g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则g(x)=______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=
x+a
x2+bx+1
在[-1,c]上为奇函数,则f(
1
2
)•c的值为______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.