已知奇函数g(x)=ax+bx2+a(a∈N*,b∈R)的定义域为R,且恒有g(x)≤12.(1)求a,b的值;(2)写出函数y=g(x)在[-1,1]上的单调

已知奇函数g(x)=ax+bx2+a(a∈N*,b∈R)的定义域为R,且恒有g(x)≤12.(1)求a,b的值;(2)写出函数y=g(x)在[-1,1]上的单调

题型:解答题难度:一般来源:不详
已知奇函数g(x)=
ax+b
x2+a
(a∈N*,b∈R)
的定义域为R,且恒有g(x)≤
1
2

(1)求a,b的值;
(2)写出函数y=g(x)在[-1,1]上的单调性,并用定义证明;
(3)讨论关于x的方程g(x)-t=0(t∈R)的根的个数.
答案
(1)∵g(x)为奇函数且函数的定义域为R,
∴a>0且g(0)=
b
a
=0
∴b=0,故有g(x)=
ax
x2+a

g(x)≤
1
2
恒成立即
ax
x2+a
1
2
恒成立
整理可得,x2-2ax+a≥0恒成立
∴△=4a2-4a≤0
解可得,0<a≤1
∵a∈N*
∴a=1
(2)g(x)在[-1,1]上单调递增,证明如下
z证明:由(1)可得,g(x)=
x
x2+1
,x∈[-1,1]
设0≤x1<x2≤1
则g(x1)-g(x2)=
x1
x12+1
-
x2
x22+1

=
x1(x22+1)-x2(x12+1)
(x12+1)(x22+1)

=
(x1-x2)(1-x1x2)
(x12+1)(x22+1)

∵0≤x1<x2≤1
∴x1-x2<0,1-x1x2>0,1+x12>0,1+x22>0
则g(x1)-g(x2)=
(x1-x2)(1-x1x2)
(x12+1)(x22+1)
<0
即g(x1)<g(x2
∴g(x)在[0,1]上单调递增
根据奇函数对称区间上的单调性一致可知,且g(0)=0,则可得g(x)在[-1,0)上单调递增
综上可得,g(x)在[-1,1]上单调递增
(3)由(2)可得,-
1
2
≤g(x)≤
1
2

①当t
1
2
或t<-
1
2
时,方程g(x)-t=0没有实数根
②当-
1
2
≤t≤
1
2
时,方程g(x)-t=0有1根实数根
举一反三
已知f(x)是(-∞,0)∪(0,+∞)上偶函数,当x∈(0,+∞)时,f(x)是单调增函数,且f(1)=0,则f(x+1)<0的解集为______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并予以证明;
(3)当a>1时,求使f(x)>0的x的取值范围.
题型:解答题难度:一般| 查看答案
函数f(x)=x2+bx+1的图象关于y轴对称,则实数b=______.
题型:填空题难度:简单| 查看答案
已知定义域为R的偶函数f(x),当x≥0时f(x)=2-x,则当x<0时,f(x)=______.
题型:填空题难度:一般| 查看答案
函数f(x)=x3-x+2n,x∈R为奇函数,则n的值为______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.