已知f(x)是定义在R上的偶函数,且f(x-32)=f(x+12)恒成立,当x∈[2,3]时,f(x)=x,则当x∈(-1,0)时,函数f(x)的解析式为___

已知f(x)是定义在R上的偶函数,且f(x-32)=f(x+12)恒成立,当x∈[2,3]时,f(x)=x,则当x∈(-1,0)时,函数f(x)的解析式为___

题型:填空题难度:一般来源:不详
已知f(x)是定义在R上的偶函数,且f(x-
3
2
)=f(x+
1
2
)
恒成立,当x∈[2,3]时,f(x)=x,则当x∈(-1,0)时,函数f(x)的解析式为______.
答案
因为f(x-
3
2
)=f(x+
1
2
)
恒成立⇒f(x)=f(x+2)⇒周期T=2.
∴x∈(-1,0)⇒-x∈(0,1)⇒-x+2∈(2,3).
∵f(x)是定义在R上的偶函数;
且当x∈[2,3]时,f(x)=x
∴x∈(-1,0),可得f(x)=f(-x)=f(-x+2)=-x+2.
即x∈(-1,0)时,f(x)=-x+2.
故答案为:f(x)=-x+2.
举一反三
已知定义在R上的偶函数f(x)满足:f(x+2)=f(x)+f(1)且在区间[0,1]上单调递增,那么,下列关于此函数f(x)性质的表述:
①函数y=f(x)的图象关于直线x=1对称; 
②函数y=f(x)是周期函数;
③当x∈[-3,-2]时,f′(x)≥0; ④函数y=f(x)的图象上横坐标为偶数的点都是函数的极小值点.  
其中正确表述的番号是______.
题型:填空题难度:一般| 查看答案
已知f(x)=
a
a2-1
(ax-a-x)
,(a>0且a≠1)
(1)判断f(x)的奇偶性.
(2)讨论f(x)的单调性.
(3)当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.
题型:解答题难度:一般| 查看答案
已知对于任意非零实数m,不等式|5m-3|+|3-4m|≥|m|(x-
2
x
)恒成立,则实数x的取值范围是______.
题型:填空题难度:一般| 查看答案
已知定义域为(-2,2)的奇函数y=f(x)是增函数,且f(a-3)+f(9-2a)>0,求a的取值范围.
题型:解答题难度:一般| 查看答案
下列四个命题中
①“k=1”是“函数y=cos2kx-sin2kx的最小正周期为π”的充要条件;
②“a=3”是“直线ax+2y+3a=0与直线3x+(a-1)y=a-7相互垂直”的充要条件;
③函数y=
x2+4


x2+3
的最小值为2
其中假命题的为______(将你认为是假命题的序号都填上)
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.