设函数f(x)=lnx-px+1,其中p为常数.(Ⅰ)求函数f(x)的极值点;(Ⅱ)当p>0时,若对任意的x>0,恒有在f(x)≤0,求p的取值范围;(Ⅲ)求证

设函数f(x)=lnx-px+1,其中p为常数.(Ⅰ)求函数f(x)的极值点;(Ⅱ)当p>0时,若对任意的x>0,恒有在f(x)≤0,求p的取值范围;(Ⅲ)求证

题型:解答题难度:一般来源:广州模拟
设函数f(x)=lnx-px+1,其中p为常数.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)当p>0时,若对任意的x>0,恒有在f(x)≤0,求p的取值范围;
(Ⅲ)求证:
ln22
22
+
ln32
32
+…+
lnn2
n2
2n2-n-1
2(n+1)
(n∈N,n≥2)
答案
(Ⅰ)∵f(x)=lnx-px+1定义域为(0,+∞),
f′(x)=
1
x
-p=
1-px
x

当p≤0时,f′(x)>0,f(x)在(0,+∞)上无极值点
当p>0时,令f"(x)=0,∴x=
1
p
∈(0,+∞),f"(x)、f(x)随x的变化情况如下表:

魔方格

从上表可以看出:当p>0时,f(x)有唯一的极大值点x=
1
p

(Ⅱ)当p>0时,在x=
1
p
处取得极大值f(
1
p
)=ln
1
p
,此极大值也是最大值,
要使f(x)≤0恒成立,只需f(
1
p
)=ln
1
p
≤0

∴p≥1
∴p的取值范围为[1,+∞)
(Ⅲ)令p=1,由(Ⅱ)知,lnx-x+1≤0,
∴lnx≤x-1,
∵n∈N,n≥2
∴lnn2≤n2-1,
lnn2
n2
n2-1
n2
=1-
1
n2

ln22
22
+
ln32
32
++
lnn2
n2
≤(1-
1
22
)+(1-
1
32
)++(1-
1
n2
)
=(n-1)-(
1
22
+
1
32
++
1
n2
)
<(n-1)-(
1
2×3
+
1
3×4
++
1
n(n+1)
)
=(n-1)-(
1
2
-
1
3
+
1
3
-
1
4
++
1
n
-
1
n+1
)

=(n-1)-(
1
2
-
1
n+1
)=
2n2-n-1
2(n+1)

∴结论成立
举一反三
如果存在实数x,使cosa=
x
2
+
1
2x
成立,那么实数x的取值范围是(  )
A.{-1,1}B.{x|x<0或x=1}C.{x|x>0或x=-1}D.{x|x≤-1或x≥1}
题型:单选题难度:简单| 查看答案
设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=(  )
A.-3B.-1C.1D.3
题型:单选题难度:一般| 查看答案
函数f(x)=|x-1|+|x+1|是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既奇又偶函数
题型:单选题难度:简单| 查看答案
已知奇函数f(x)在R上单调递减,则f(-1)______f(3)(用<、﹦、>填空)
题型:填空题难度:一般| 查看答案
设函数y=f(x)的图象关于原点对称,则下列等式中一定成立的是(  )
A.f(x)-f(-x)=0B.f(x)+f(-x)=0C.f(x)+f(|x|)=0D.f(x)-f(|x|)=0
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.