已知a,b,c∈R,且a<b<c,函数f(x)=ax2+2bx+c满足f(1)=0,f(t)=-a,(t∈R且t≠1)(Ⅰ)求证:a<0,c>0;(Ⅱ) 求ba

已知a,b,c∈R,且a<b<c,函数f(x)=ax2+2bx+c满足f(1)=0,f(t)=-a,(t∈R且t≠1)(Ⅰ)求证:a<0,c>0;(Ⅱ) 求ba

题型:解答题难度:一般来源:不详
已知a,b,c∈R,且a<b<c,函数f(x)=ax2+2bx+c满足f(1)=0,f(t)=-a,(t∈R且t≠1)
(Ⅰ)求证:a<0,c>0;
(Ⅱ) 求
b
a
的取值范围.
答案
(Ⅰ)证:∵f(x)=ax2+2bx+c
∴f(1)=a+2b+c=0
又a<b<c∴4a<a+2b+c<4c
即4a<0<4c∴a<0,c>0
(Ⅱ) 由(1)得:c=-a-2b代入a<b<c
结合a<0知:-
1
3
b
a
<1
…(2)
将c=-a-2b代入at2+2bt+c=-a得at2+2bt-2b=0,
即方程ax2+2bx-2b=0有实根,
△=4b2+8ab≥0∴(
b
a
)2+2(
b
a
)≥0 ∴
b
a
≤-2
b
a
≥0
…(3)
联立(2)(3)知0≤
b
a
<1

所以,所求
b
a
的取值范围是[0,1)
举一反三
设二次函数f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,求a2+b2的最小值.
题型:解答题难度:一般| 查看答案
已知f(x)=-x2+2ax+1-a.
(1)若f(x)在[0,1]上的最大值是2,求实数a的值;
(2)设M={a∈R:f(x)在区间[-2,3]上的最小值为-1},试求M;
(3)是否存在实数a使f(x)在[-4,2]上的值域为[-12.,13]?若存在,求出a的值;若不存在,说明理由.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
1
2
x2-x+
3
2
.若函数的定义域和值域都是[1,a](a>1),求a的值.
题型:解答题难度:一般| 查看答案
在[
1
2
,2
]上,函数f(x)=x2+px+q与函数g(x)=2x+
1
x2
在同一点处取得相同的最小值,那么函数f(x)在[
1
2
,2
]上的最大值是(  )
A.
13
4
B.4C.8D.
5
4
题型:单选题难度:简单| 查看答案
已知数列{an}是等比数列,且每一项都是正数,若a2,a48是2x2-7x+6=0的两个根,则a1•a2•a25•a48•a49的值为(  )
A.
21
2
B.9


3
C.±9


3
D.35
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.