已知函数g(x)=ax2-2ax+b+1(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=g(x)x.(1)求a、b的值;(2)若不等式f(2x)-

已知函数g(x)=ax2-2ax+b+1(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=g(x)x.(1)求a、b的值;(2)若不等式f(2x)-

题型:解答题难度:一般来源:不详
已知函数g(x)=ax2-2ax+b+1(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=
g(x)
x

(1)求a、b的值;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]上有解,求实数k的取值范围.
答案
(1)函数g(x)=ax2-2ax+b+1=a(x-1)2+1+b-a,
因为a>0,所以g(x)在区间[2,3]上是增函数,故





g(2)=1
g(3)=4
,解得





a=1
b=0
. ….(6分)
(2)由已知可得f(x)=x+
1
x
-2,所以,不等式f(2x)-k•2x≥0可化为 2x+
1
2x
-2≥k•2x
可化为 1+(
1
2x
)
2
-2•
1
2x
≥k,令t=
1
2x
,则 k≤t2-2t+1.
因 x∈[-1,1],故 t∈[
1
2
,2].故k≤t2-2t+1在t∈[
1
2
,2]上能成立.
记h(t)=t2-2t+1,因为 t∈[
1
2
,2],故 h(t)max =h(2)=1,
所以k的取值范围是(-∞,1]. …(14分)
举一反三
函数y=2x-2和y=
1
3
x2的图象如图所示,其中有且只有X=x1,x2,x3时,两函数值相等,
且x1<0<x2<x3,0为坐标原点.现给出下列三个结论:
①当x∈(-∞,-1)时,2x-2<x2
②x2∈(1,2);
③x3∈(4,5).其中正确结论的序号为______.魔方格
题型:填空题难度:简单| 查看答案
函数f(x)=|x2+x-t|在区间[-1,2]上最大值为4,则实数t=______.
题型:填空题难度:一般| 查看答案
已知二次函数f(x)满足:(1)f(0)=-6,(2)关于x的方程f(x)=0的两实根是x1=-1,x2=3.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设g(x)=f(x)-mx,且g(x)在区间[-2,2]上是单调函数,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2+3x|x-a|,其中a∈R.
(1)当a=2时,把函数f(x)写成分段函数的形式;
(2)当a=2时,求f(x)在区间[1,3]上的最值;
(3)设a≠0,函数f(x)在(m,n)上既有最大值又有最小值,请分别求出m、n的取值范围(用a表示).
题型:解答题难度:一般| 查看答案
对于任意k∈[-1,1],函数f(x)=x2+(k-4)x-2k+4的值恒大于零,则x的取值范围是()
A.x<0B.x>4C.x<1或x>3D.x<1
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.