若实数a满足a>|y-1|-|y-2|(y∈R)恒成立,则函数f(x)=loga(x2-5x+6)的单调减区间为(  )A.(52,+∞)B.(3,+∞)C.(

若实数a满足a>|y-1|-|y-2|(y∈R)恒成立,则函数f(x)=loga(x2-5x+6)的单调减区间为(  )A.(52,+∞)B.(3,+∞)C.(

题型:单选题难度:简单来源:不详
若实数a满足a>|y-1|-|y-2|(y∈R)恒成立,则函数f(x)=loga(x2-5x+6)的单调减区间为(  )
A.(
5
2
,+∞)
B.(3,+∞)C.(-∞
5
2
)
D.(-∞,2)
答案

魔方格
令g(y)=|y-1|-|y-2|=





1      y≥2
2y-3 1<y<
-1     y<1
2
则函数的图象如下图,由图可知函数的最大值1
由a>|y-1|-|y-2|(y∈R)恒成立可知a>g(y)max,a>1
函数f(x)=loga(x2-5x+6)的定义域为{x|x>3,或x<2}
令t=x2-5x+6在(-∞,2]上单调递减,在[3,+∞)单调递增
y=logat在(0,+∞)单调递增
由复合函数的单调性可知,函数f(x)在(-∞,2)单调递减
故选:D
举一反三
函数f(x)=|log2x|的图象是(  )
A.
魔方格
B.
魔方格
C.
魔方格
D.
魔方格
题型:单选题难度:简单| 查看答案
已知{an}是公差不为0的等差数列,{bn} 是等比数列,其中a1=2,b1=1,a2=b2,2a4=b3,且存在常数α、β,使得an=logαbn+β对每一个正整数n都成立,则αβ=______.
题型:填空题难度:一般| 查看答案
已知loga
4
3
>1
,则a的取值范围是(  )
A.a>1B.a>
4
3
C.0<a<1D.1<a<
4
3
题型:单选题难度:一般| 查看答案
若lg(x-y)+lg(x+2y)=lg2+lgx+lgy,求
x
y
的值.
题型:解答题难度:一般| 查看答案
化简
1
2
log612-2log6


2
的结果为(  )
A.6


2
B.12


2
C.log6


3
D.
1
2
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.