(1)∵=(cos(α-β),-1),=(cos(α+β),2),且∥, ∴2cos(α-β)+cos(α+β)=0,即2(cosαcosβ+sinαsinβ)+cosαcosβ-sinαsinβ=0, ∴3cosαcosβ+sinαsinβ=0,又α,β≠kπ+(k∈Z), ∴tanα•tanβ=-3; (2)∵=(sinα,sinβ),=(cos(α-β),-1),=(cos(α+β),2), ∴2+•=sin2α+sin2β+cos(α-β)cos(α+β)-2 =sin2α+sin2β+cos2αcos2β-sin2αsin2β-2 =sin2α+(1-sin2α)sin2β+cos2αcos2β-2 =sin2α+cos2αsin2β+cos2αcos2β-2 =sin2α+cos2α(sin2β+cos2β)-2 =sin2α+cos2α+2 =1-2 =-1. |