设=(a>0)为奇函数,且min=,数列{an}与{bn}满足 如下关系:a1=2,   ,. (1)求f(x)的解析表达式;(2) 证明:当n∈N+时,

设=(a>0)为奇函数,且min=,数列{an}与{bn}满足 如下关系:a1=2,   ,. (1)求f(x)的解析表达式;(2) 证明:当n∈N+时,

题型:不详难度:来源:
=(a>0)为奇函数,且
min=,数列{an}与{bn}满足 如下关系:a1=2,   
(1)求f(x)的解析表达式;
(2) 证明:当n∈N+时, 有bn
答案
(1)f(x)=  (2 同解析
解析
由f(x)是奇函数,得 b=c=0,          
由|f(x)min|=,得a=2,故f(x)=        
(2) =
==       
===…=,而b1=
=                                           
当n=1时, b1=,命题成立,                        
当n≥2时
∵2n-1=(1+1)n-1=1+≥1+=n
,即  bn. 
举一反三
已知等差数列{an}前17项和S17=51,则a7+ a11=          
题型:不详难度:| 查看答案
根据如图所示的流程图,将输出的的值依次分别记为,将输出的的值依次分别记为

(Ⅰ)求数列通项公式;
(Ⅱ)依次在中插入个3,就能得到一个新数列,则是数列中的第几项?
(Ⅲ)设数列的前项和为,问是否存在这样的正整数,使数列的前项的和,如果存在,求出的值,如果不存在,请说明理由.
题型:不详难度:| 查看答案
我们用部分自然数构造如下的数表:用aij(i≥j)表示第i行第j个数(i、j为正整数),使ail=aii="i" ;每行中的其余各数分别等于其“肩膀”上的两个数之和(第一、二行除外,如图),设第n(n为正整数)行中各数之和为bn
(1)试写出b2一2b1;,b3-2b2,b4-2b3,b5-2b4,并推测bn+1和bn的关系(无需证明);
(2)证明数列{bn+2}是等比数列,并求数列{bn}的通项公式bn
(3)数列{ bn}中是否存在不同的三项bp,bq,br(p,q,r为正整数)恰好成等差数列?若存在求出P,q,r的关系;若不存在,请说明理由.
 
题型:不详难度:| 查看答案
在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项,公差及前n项和.
题型:不详难度:| 查看答案
已知函数fx)=x2-4,设曲线yfx)在点(xnfxn))处的切线与x轴的交点为(xn+1,0)(n),其中为正实数.  
(Ⅰ)用表示xn+1
(Ⅱ)若a1=4,记an=lg,证明数列{}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bnxn-2,Tn是数列{bn}的前n项和,证明Tn<3.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.