设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10.
题型:不详难度:来源:
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10. |
答案
解析
∵{an}为等差数列,{bn}为等比数列,∴a2+a4=2a3,b2·b4=b32, 已知a2+a4=b3,b2·b4=a3,∴b3=2a3,a3=b32, 得b3=2b32,∵b3≠0,∴b3=,a3=. 由a1=1,a3=,知{an}的公差d=-, ∴S10=10a1+d=-. 由b1=1,b3=,知{bn}的公比q=或q=-,
|
举一反三
{an}为等差数列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*) (1)求证:当k取不同自然数时,此方程有公共根; (2)若方程不同的根依次为x1,x2,…,xn,…, 求证:数列为等差数列. |
数列{an}满足a1=2,对于任意的n∈N*都有an>0,且(n+1)an2+an·an+1-nan+12=0,又知数列{bn}的通项为bn=2n-1+1. (1)求数列{an}的通项an及它的前n项和Sn; (2)求数列{bn}的前n项和Tn; (3)猜想Sn与Tn的大小关系,并说明理由. |
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,(n∈N*). (1)求数列{an}的通项公式; (2)设Sn=|a1|+|a2|+…+|an|,求Sn; (3)设bn=(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m,使得对任意n∈N*均有Tn>成立?若存在,求出m的值;若不存在,说明理由. |
已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145. (1)求数列{bn}的通项bn; (2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1),记Sn是数列{an}的前n项和,试比较Sn与logabn+1的大小,并证明你的结论. |
设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…). (1)求证: 数列{an}是等比数列; (2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f()(n=2,3,4…),求数列{bn}的通项bn; (3)求和: b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1. |
最新试题
热门考点