证明:(I)f(an)=4+(n-1)×2=2n+2, 即logaan=2n+2,可得an=a2n+2. ∴===a2(n≥2,n∈N*)为定值. ∴{an}为等比数列.(5分) (II)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2.(7分) 当a=时,bn=anf(an)=(2n+2)()2n+2=(n+1)2n+2.(8分) Sn=2×23+3×24+4×25++(n+1)•2n+2 ① 2Sn=2×24+3×25+4×26++n•2n+2+(n+1)•2n+3 ② ①-②得-Sn=2×23+24+25++2n+2-(n+1)•2n+3(12分) =16+-(n+1)•2n+3=16+2n+3-24-n•2n+3-2n+3. ∴Sn=n•2n+3.(14分) |